scispace - formally typeset
Search or ask a question
Author

Horst Aspöck

Other affiliations: University of Vienna
Bio: Horst Aspöck is an academic researcher from Medical University of Vienna. The author has contributed to research in topics: Neuropterida & Toxoplasma gondii. The author has an hindex of 41, co-authored 227 publications receiving 6924 citations. Previous affiliations of Horst Aspöck include University of Vienna.


Papers
More filters
Journal ArticleDOI
Bernhard Misof, Shanlin Liu, Karen Meusemann1, Ralph S. Peters, Alexander Donath, Christoph Mayer, Paul B. Frandsen2, Jessica L. Ware2, Tomas Flouri3, Rolf G. Beutel4, Oliver Niehuis, Malte Petersen, Fernando Izquierdo-Carrasco3, Torsten Wappler5, Jes Rust5, Andre J. Aberer3, Ulrike Aspöck6, Ulrike Aspöck7, Horst Aspöck7, Daniela Bartel7, Alexander Blanke8, Simon Berger3, Alexander Böhm7, Thomas R. Buckley9, Brett Calcott10, Junqing Chen, Frank Friedrich11, Makiko Fukui12, Mari Fujita8, Carola Greve, Peter Grobe, Shengchang Gu, Ying Huang, Lars S. Jermiin1, Akito Y. Kawahara13, Lars Krogmann14, Martin Kubiak11, Robert Lanfear15, Robert Lanfear16, Robert Lanfear17, Harald Letsch7, Yiyuan Li, Zhenyu Li, Jiguang Li, Haorong Lu, Ryuichiro Machida8, Yuta Mashimo8, Pashalia Kapli3, Pashalia Kapli18, Duane D. McKenna19, Guanliang Meng, Yasutaka Nakagaki8, José Luis Navarrete-Heredia20, Michael Ott21, Yanxiang Ou, Günther Pass7, Lars Podsiadlowski5, Hans Pohl4, Björn M. von Reumont22, Kai Schütte11, Kaoru Sekiya8, Shota Shimizu8, Adam Slipinski1, Alexandros Stamatakis3, Alexandros Stamatakis23, Wenhui Song, Xu Su, Nikolaus U. Szucsich7, Meihua Tan, Xuemei Tan, Min Tang, Jingbo Tang, Gerald Timelthaler7, Shigekazu Tomizuka8, Michelle D. Trautwein24, Xiaoli Tong25, Toshiki Uchifune8, Manfred Walzl7, Brian M. Wiegmann26, Jeanne Wilbrandt, Benjamin Wipfler4, Thomas K. F. Wong1, Qiong Wu, Gengxiong Wu, Yinlong Xie, Shenzhou Yang, Qing Yang, David K. Yeates1, Kazunori Yoshizawa27, Qing Zhang, Rui Zhang, Wenwei Zhang, Yunhui Zhang, Jing Zhao, Chengran Zhou, Lili Zhou, Tanja Ziesmann, Shijie Zou, Yingrui Li, Xun Xu, Yong Zhang, Huanming Yang, Jian Wang, Jun Wang, Karl M. Kjer2, Xin Zhou 
07 Nov 2014-Science
TL;DR: The phylogeny of all major insect lineages reveals how and when insects diversified and provides a comprehensive reliable scaffold for future comparative analyses of evolutionary innovations among insects.
Abstract: Insects are the most speciose group of animals, but the phylogenetic relationships of many major lineages remain unresolved. We inferred the phylogeny of insects from 1478 protein-coding genes. Phylogenomic analyses of nucleotide and amino acid sequences, with site-specific nucleotide or domain-specific amino acid substitution models, produced statistically robust and congruent results resolving previously controversial phylogenetic relations hips. We dated the origin of insects to the Early Ordovician [~479 million years ago (Ma)], of insect flight to the Early Devonian (~406 Ma), of major extant lineages to the Mississippian (~345 Ma), and the major diversification of holometabolous insects to the Early Cretaceous. Our phylogenomic study provides a comprehensive reliable scaffold for future comparative analyses of evolutionary innovations among insects.

1,998 citations

Journal ArticleDOI
TL;DR: Investigation of the first known human cases of babesiosis in Italy and Austria, which occurred in two asplenic men, indicates the patients were not infected with B. divergens but with an organism with previously unreported molecular characteristics for the 18S rRNA gene.
Abstract: In Europe, most reported human cases of babesiosis have been attributed, without strong molecular evidence, to infection with the bovine parasite Babesia divergens. We investigated the first known human cases of babesiosis in Italy and Austria, which occurred in two asplenic men. The complete 18S ribosomal RNA (18S rRNA) gene was amplified from specimens of their whole blood by polymerase chain reaction (PCR). With phylogenetic analysis, we compared the DNA sequences of the PCR products with those for other Babesia spp. The DNA sequences were identical for the organism from the two patients. In phylogenetic analysis, the organism clusters with B. odocoilei, a parasite of white-tailed deer; these two organisms form a sister group with B. divergens. This evidence indicates the patients were not infected with B. divergens but with an organism with previously unreported molecular characteristics for the 18S rRNA gene.

304 citations

Journal ArticleDOI
TL;DR: Results from holomorphological and recent molecular cladistic analyses of Neuropterida agree in supporting the sister‐group relationships between: (1) the Raphidioptera and the clade Megaloptera + Neuroptera, and (2) the suborder Nevrorthiformia and all other Neuroptera.
Abstract: Segment 9 of male Raphidioptera, comprising tergite, sternite, gonocoxites, gonostyli and gonapophyses, is a benchmark for homologies in the male and female terminalia of the three Neuropterida orders Raphidioptera, Megaloptera and Neuroptera. The segments relating to genitalia are 9, 10 and 11 in males and 7, 8 and 9 in females. Results from holomorphological and recent molecular cladistic analyses of Neuropterida agree in supporting the sister-group relationships between: (1) the Raphidioptera and the clade Megaloptera + Neuroptera, and (2) the suborder Nevrorthiformia and all other Neuroptera. The main discrepancy between the results of these studies is the nonmonophyly of the suborder Hemerobiiformia in the molecular analysis. The monophyly of the Megaloptera (which has been repeatedly questioned) is further corroborated by a hitherto overlooked ground pattern autapomorphy: the presence of eversible sacs within the complex of the fused gonocoxites 11 in Corydalidae and Sialidae. The recently discovered paired complex of gonocoxites 10 (parameres) in Nipponeurorthus (Nevrorthidae) indicates that the curious apex of sternite 9 of Nevrorthus and Austroneurorthus is the amalgamation of the sclerites of gonocoxites 10 with sternite 9, interpreted as synapomorphic. In the molecular study, the Nevrorthidae, Sisyridae and Osmylidae branch off in consecutive splitting events, a result that is supported by the analysis of male genital sclerites reported here. Extraordinary parallel apomorphies (e.g. excessive enlargement and modification of gonocoxites 10 ending in a thread-like ‘penisfilum’) in derived representatives of Coniopterygidae, Berothidae, Rhachiberothidae and Mantispidae corroborate the dilarid clade of the morphological analysis and leads us to hypothesize a sister-group relationship of the Coniopterygidae with the dilarid clade. A re-interpretation of the tignum of Chrysopidae as gonocoxites 11 means that the structure previously called the gonarcus represents the fused gonocoxites 9. In Hemerobiidae, the corresponding sclerite is consequently also homologized as fused gonocoxites 9. The enlargement of the lateral wings of the gonocoxites in both families is interpreted as a synapomorphy. Excessive enlargement of gonostyli 11 in the Polystoechotid clade and Myrmeleontiformia supports a sister-group relationship of these two clades. The occurrence of certain serial homologues of female genitalia structures (gonocoxites and gonapophyses), such as the digitiform processus together with the flat appendices in segment 8 of certain Myrmeleontidae, or the wart-like processus together with the flat circular sclerites in segment 7 of certain Berothidae, as well as the presence of gonocoxites 8 as pseudosternites in certain Nemopteridae and Coniopterygidae, are probably character reversals. The digitiform processus of tergite 9 (pseudogonocoxites) in Rhachiberothidae and Austroberothella (Berothidae) are either independently developed acquisitions with a function in oviposition, or are homologous sclerites, possibly of epipleurite origin.

214 citations

Journal ArticleDOI
TL;DR: The results of this study indicate a correlation between the phylogenetic relationship and pathogenicity of Acanthamoeba sp.
Abstract: Eleven Acanthamoeba isolates, obtained from Acanthamoeba keratitis patients, from contact lens cases of non-Acanthamoeba keratitis patients, from asymptomatic individuals, from necrotic tissue, and from tap water and two reference strains were investigated by morphological, molecular biological, and physiological means in order to discriminate clinically relevant and nonrelevant isolates. All clinically relevant isolates showed Acanthamoeba sp. group II morphology. 18S ribosomal DNA sequencing revealed sequence type T4 to be the most prevalent group among the isolates and also the group recruiting most of the pathogenic strains. Interestingly, within T4 the strains of no clinical relevance clustered together. Moreover, physiological properties appeared to be highly consistent with initial pathogenicity and with sequence clustering. Altogether, the results of our study indicate a correlation between the phylogenetic relationship and pathogenicity.

195 citations

Journal ArticleDOI
TL;DR: The combination of well-resolved phylogenies obtained by phylogenomic analyses and well-documented extensive morphological datasets is an appropriate basis for reconstructing complex morphological transformations and for the inference of evolutionary histories.
Abstract: Despite considerable progress in systematics, a comprehensive scenario of the evolution of phenotypic characters in the mega-diverse Holometabola based on a solid phylogenetic hypothesis was still missing. We addressed this issue by de novo sequencing transcriptome libraries of representatives of all orders of holometabolan insects (13 species in total) and by using a previously published extensive morphological dataset. We tested competing phylogenetic hypotheses by analyzing various specifically designed sets of amino acid sequence data, using maximum likelihood (ML) based tree inference and Four-cluster Likelihood Mapping (FcLM). By maximum parsimony-based mapping of the morphological data on the phylogenetic relationships we traced evolutionary transformations at the phenotypic level and reconstructed the groundplan of Holometabola and of selected subgroups. In our analysis of the amino acid sequence data of 1,343 single-copy orthologous genes, Hymenoptera are placed as sister group to all remaining holometabolan orders, i.e., to a clade Aparaglossata, comprising two monophyletic subunits Mecopterida (Amphiesmenoptera + Antliophora) and Neuropteroidea (Neuropterida + Coleopterida). The monophyly of Coleopterida (Coleoptera and Strepsiptera) remains ambiguous in the analyses of the transcriptome data, but appears likely based on the morphological data. Highly supported relationships within Neuropterida and Antliophora are Raphidioptera + (Neuroptera + monophyletic Megaloptera), and Diptera + (Siphonaptera + Mecoptera). ML tree inference and FcLM yielded largely congruent results. However, FcLM, which was applied here for the first time to large phylogenomic supermatrices, displayed additional signal in the datasets that was not identified in the ML trees. Our phylogenetic results imply that an orthognathous larva belongs to the groundplan of Holometabola, with compound eyes and well-developed thoracic legs, externally feeding on plants or fungi. Ancestral larvae of Aparaglossata were prognathous, equipped with single larval eyes (stemmata), and possibly agile and predacious. Ancestral holometabolan adults likely resembled in their morphology the groundplan of adult neopteran insects. Within Aparaglossata, the adult’s flight apparatus and ovipositor underwent strong modifications. We show that the combination of well-resolved phylogenies obtained by phylogenomic analyses and well-documented extensive morphological datasets is an appropriate basis for reconstructing complex morphological transformations and for the inference of evolutionary histories.

155 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Efforts have been put to improve efficiency, flexibility, support for 'big data' (R's long vectors), ease of use and quality check before a new release of ape.
Abstract: Summary After more than fifteen years of existence, the R package ape has continuously grown its contents, and has been used by a growing community of users The release of version 50 has marked a leap towards a modern software for evolutionary analyses Efforts have been put to improve efficiency, flexibility, support for 'big data' (R's long vectors), ease of use and quality check before a new release These changes will hopefully make ape a useful software for the study of biodiversity and evolution in a context of increasing data quantity Availability and implementation ape is distributed through the Comprehensive R Archive Network: http://cranr-projectorg/package=ape Further information may be found at http://ape-packageirdfr/

4,303 citations

Journal ArticleDOI

3,734 citations

Journal ArticleDOI
TL;DR: PartitionFinder 2 is a program for automatically selecting best-fit partitioning schemes and models of evolution for phylogenetic analyses that includes the ability to analyze morphological datasets, new methods to analyze genome-scale datasets, and new output formats to facilitate interoperability with downstream software.
Abstract: PartitionFinder 2 is a program for automatically selecting best-fit partitioning schemes and models of evolution for phylogenetic analyses. PartitionFinder 2 is substantially faster and more efficient than version 1, and incorporates many new methods and features. These include the ability to analyze morphological datasets, new methods to analyze genome-scale datasets, new output formats to facilitate interoperability with downstream software, and many new models of molecular evolution. PartitionFinder 2 is freely available under an open source license and works on Windows, OSX, and Linux operating systems. It can be downloaded from www.robertlanfear.com/partitionfinder. The source code is available at https://github.com/brettc/partitionfinder.

3,445 citations

Journal ArticleDOI
TL;DR: Recent epidemiological data on T. gondii, hypotheses on the major routes of transmission to humans in different populations, and preventive measures that may reduce the risk of contracting a primary infection during pregnancy are presented.

3,160 citations

Journal ArticleDOI
Bernhard Misof, Shanlin Liu, Karen Meusemann1, Ralph S. Peters, Alexander Donath, Christoph Mayer, Paul B. Frandsen2, Jessica L. Ware2, Tomas Flouri3, Rolf G. Beutel4, Oliver Niehuis, Malte Petersen, Fernando Izquierdo-Carrasco3, Torsten Wappler5, Jes Rust5, Andre J. Aberer3, Ulrike Aspöck6, Ulrike Aspöck7, Horst Aspöck6, Daniela Bartel6, Alexander Blanke8, Simon Berger3, Alexander Böhm6, Thomas R. Buckley9, Brett Calcott10, Junqing Chen, Frank Friedrich11, Makiko Fukui12, Mari Fujita8, Carola Greve, Peter Grobe, Shengchang Gu, Ying Huang, Lars S. Jermiin1, Akito Y. Kawahara13, Lars Krogmann14, Martin Kubiak11, Robert Lanfear15, Robert Lanfear16, Robert Lanfear17, Harald Letsch6, Yiyuan Li, Zhenyu Li, Jiguang Li, Haorong Lu, Ryuichiro Machida8, Yuta Mashimo8, Pashalia Kapli3, Pashalia Kapli18, Duane D. McKenna19, Guanliang Meng, Yasutaka Nakagaki8, José Luis Navarrete-Heredia20, Michael Ott21, Yanxiang Ou, Günther Pass6, Lars Podsiadlowski5, Hans Pohl4, Björn M. von Reumont22, Kai Schütte11, Kaoru Sekiya8, Shota Shimizu8, Adam Slipinski1, Alexandros Stamatakis23, Alexandros Stamatakis3, Wenhui Song, Xu Su, Nikolaus U. Szucsich6, Meihua Tan, Xuemei Tan, Min Tang, Jingbo Tang, Gerald Timelthaler6, Shigekazu Tomizuka8, Michelle D. Trautwein24, Xiaoli Tong25, Toshiki Uchifune8, Manfred Walzl6, Brian M. Wiegmann26, Jeanne Wilbrandt, Benjamin Wipfler4, Thomas K. F. Wong1, Qiong Wu, Gengxiong Wu, Yinlong Xie, Shenzhou Yang, Qing Yang, David K. Yeates1, Kazunori Yoshizawa27, Qing Zhang, Rui Zhang, Wenwei Zhang, Yunhui Zhang, Jing Zhao, Chengran Zhou, Lili Zhou, Tanja Ziesmann, Shijie Zou, Yingrui Li, Xun Xu, Yong Zhang, Huanming Yang, Jian Wang, Jun Wang, Karl M. Kjer2, Xin Zhou 
07 Nov 2014-Science
TL;DR: The phylogeny of all major insect lineages reveals how and when insects diversified and provides a comprehensive reliable scaffold for future comparative analyses of evolutionary innovations among insects.
Abstract: Insects are the most speciose group of animals, but the phylogenetic relationships of many major lineages remain unresolved. We inferred the phylogeny of insects from 1478 protein-coding genes. Phylogenomic analyses of nucleotide and amino acid sequences, with site-specific nucleotide or domain-specific amino acid substitution models, produced statistically robust and congruent results resolving previously controversial phylogenetic relations hips. We dated the origin of insects to the Early Ordovician [~479 million years ago (Ma)], of insect flight to the Early Devonian (~406 Ma), of major extant lineages to the Mississippian (~345 Ma), and the major diversification of holometabolous insects to the Early Cretaceous. Our phylogenomic study provides a comprehensive reliable scaffold for future comparative analyses of evolutionary innovations among insects.

1,998 citations