scispace - formally typeset
Search or ask a question
Author

Hossein Kazemi

Bio: Hossein Kazemi is an academic researcher from Colorado School of Mines. The author has contributed to research in topics: Oil shale & Enhanced oil recovery. The author has an hindex of 35, co-authored 185 publications receiving 6084 citations. Previous affiliations of Hossein Kazemi include Southern California Gas Company & University of Texas System.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, an analytical and a numerical solution to Buckley-Leverett flow in a 1D fractured porous rock is given, where an empirical matrix/fracture transfer function was used.
Abstract: In this paper an analytical and a numerical solution to Buckley-Leverett flow in a 1D fractured porous rock is given. An empirical matrix/fracture transfer function was used. The numerical solution is fast and is adaptable to 3D field problems. The limitations of empirical transfer functions are discussed.

288 citations


Cited by
More filters
Book
01 Jan 1979

2,451 citations

Journal ArticleDOI
TL;DR: In this paper, the authors analyze measurements, conceptual pictures, and mathematical models of flow and transport phenomena in fractured rock systems, including water flow, conservative and reactive solutes, and two-phase flow.

1,267 citations

Journal ArticleDOI
TL;DR: In this article, theoretical and experimental approaches to flow, hydrodynamic dispersion, and miscible and immiscible displacement processes in reservoir rocks are reviewed and discussed, and two different modeling approaches to these phenomena are compared.
Abstract: In this paper, theoretical and experimental approaches to flow, hydrodynamic dispersion, and miscible and immiscible displacement processes in reservoir rocks are reviewed and discussed. Both macroscopically homogeneous and heterogeneous rocks are considered. The latter are characterized by large-scale spatial variations and correlations in their effective properties and include rocks that may be characterized by several distinct degrees of porosity, a well-known example of which is a fractured rock with two degrees of porosity---those of the pores and of the fractures. First, the diagenetic processes that give rise to the present reservoir rocks are discussed and a few geometrical models of such processes are described. Then, measurement and characterization of important properties, such as pore-size distribution, pore-space topology, and pore surface roughness, and morphological properties of fracture networks are discussed. It is shown that fractal and percolation concepts play important roles in the characterization of rocks, from the smallest length scale at the pore level to the largest length scales at the fracture and fault scales. Next, various structural models of homogeneous and heterogeneous rock are discussed, and theoretical and computer simulation approaches to flow, dispersion, and displacement in such systems are reviewed. Two different modeling approaches to these phenomena are compared. The first approach is based on the classical equations of transport supplemented with constitutive equations describing the transport and other important coefficients and parameters. These are called the continuum models. The second approach is based on network models of pore space and fractured rocks; it models the phenomena at the smallest scale, a pore or fracture, and then employs large-scale simulation and modern concepts of the statistical physics of disordered systems, such as scaling and universality, to obtain the macroscopic properties of the system. The fundamental roles of the interconnectivity of the rock and its wetting properties in dispersion and two-phase flows, and those of microscopic and macroscopic heterogeneities in miscible displacements are emphasized. Two important conceptual advances for modeling fractured rocks and studying flow phenomena in porous media are also discussed. The first, based on cellular automata, can in principle be used for computing macroscopic properties of flow phenomena in any porous medium, regardless of the complexity of its structure. The second, simulated annealing, borrowed from optimization processes and the statistical mechanics of spin glasses, is used for finding the optimum structure of a fractured reservoir that honors a limited amount of experimental data.

946 citations

Journal ArticleDOI
TL;DR: In this article, the storage of captured CO2 in coal seams has been studied and the potential storage capacity, the storage integrity of the geologic host, and the chemical and physical processes initiated by the deep underground injection of CO2.
Abstract: This article reviews the storage of captured CO2 in coal seams. Other geologic formations, such as depleted petroleum reservoirs, deep saline aquifers and others have received considerable attention as sites for sequestering CO2. This review focuses on geologic sequestration of CO2 in unmineable coalbeds as the geologic host. Key issues for geologic sequestration include potential storage capacity, the storage integrity of the geologic host, and the chemical and physical processes initiated by the deep underground injection of CO2. The review topics include (i) the estimated CO2 storage capacity of coal, along with the estimated amount and composition of coalbed gas; (ii) an evaluation of the coal seam properties relevant to CO2 sequestration, such as density, surface area, porosity, diffusion, permeability, transport, rank, adsorption/desorption, shrinkage/swelling, and thermochemical reactions; and (iii) a treatment of how coalbed methane (CBM) recovery and CO2-enhanced coalbed methane (ECBM) recovery a...

880 citations