scispace - formally typeset
Search or ask a question
Author

Hossein Nezamabadi-pour

Bio: Hossein Nezamabadi-pour is an academic researcher from Shahid Bahonar University of Kerman. The author has contributed to research in topics: Feature selection & Metaheuristic. The author has an hindex of 36, co-authored 208 publications receiving 9530 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A new optimization algorithm based on the law of gravity and mass interactions is introduced and the obtained results confirm the high performance of the proposed method in solving various nonlinear functions.

5,501 citations

Journal ArticleDOI
TL;DR: A binary version of the gravitational search algorithm, based on the law of gravity and mass interactions, is introduced and the experimental results confirm the efficiency of the BGSA in solving various nonlinear benchmark functions.
Abstract: Gravitational search algorithm is one of the new optimization algorithms that is based on the law of gravity and mass interactions. In this algorithm, the searcher agents are a collection of masses, and their interactions are based on the Newtonian laws of gravity and motion. In this article, a binary version of the algorithm is introduced. To evaluate the performances of the proposed algorithm, several experiments are performed. The experimental results confirm the efficiency of the BGSA in solving various nonlinear benchmark functions.

702 citations

Journal ArticleDOI
TL;DR: A novel feature selection algorithm based on Ant Colony Optimization (ACO) called Advanced Binary ACO (ABACO), is presented and simulation results verify that the algorithm provides a suitable feature subset with good classification accuracy using a smaller feature set than competing feature selection methods.

266 citations

Journal ArticleDOI
TL;DR: The optimum sizes and locations of DG units are found by considering the power losses and voltage profile as objective functions by the Improved Multi-objective HS algorithm.
Abstract: In this paper a new approach using Harmony Search (HS) algorithm is presented for placing Distributed Generators (DGs) in radial distribution systems. The approach is making use of a multiple objective planning framework, named an Improved Multi-objective HS (IMOHS), to evaluate the impact of DG placement and sizing for an optimal development of the distribution system. In this study, the optimum sizes and locations of DG units are found by considering the power losses and voltage profile as objective functions. The feasibility of the proposed technique is demonstrated in two distribution networks, where the qualitative comparisons are made against a well-known technique, known as Non-dominated Sorting Genetic Algorithm II (NSGA-II). Furthermore, the results obtained are compared with those available in the literature.

242 citations

Journal ArticleDOI
TL;DR: The GSA-KM algorithm helps the k-means algorithm to escape from local optima and also increases the convergence speed of the GSA algorithm, which uses the advantages of both algorithms.
Abstract: Clustering is an attractive and important task in data mining that is used in many applications. Clustering refers to grouping together data objects so that objects within a cluster are similar to one another, while objects in different clusters are dissimilar. K-means is a simple and efficient algorithm that is widely used for data clustering. However, its performance depends on the initial state of centroids and may trap in local optima. The gravitational search algorithm (GSA) is one effective method for searching problem space to find a near optimal solution. In this paper, we present a hybrid data clustering algorithm based on GSA and k-means (GSA-KM), which uses the advantages of both algorithms. The GSA-KM algorithm helps the k-means algorithm to escape from local optima and also increases the convergence speed of the GSA algorithm. We compared the performance of GSA-KM with other well-known algorithms, including k-means, genetic algorithm (GA), simulated annealing (SA), ant colony optimization (ACO), honey bee mating optimization (HBMO), particle swarm optimization (PSO) and gravitational search algorithm (GSA). Five real and standard datasets from the UCI repository have been used to demonstrate the results of the algorithms. The experimental results are encouraging in terms of the quality of the solutions and the convergence speed of the proposed algorithm.

190 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
TL;DR: The results of the classical engineering design problems and real application prove that the proposed GWO algorithm is applicable to challenging problems with unknown search spaces.

10,082 citations

Journal ArticleDOI
TL;DR: Optimization results prove that the WOA algorithm is very competitive compared to the state-of-art meta-heuristic algorithms as well as conventional methods.

7,090 citations