scispace - formally typeset
Search or ask a question
Author

Howard Hua Yang

Bio: Howard Hua Yang is an academic researcher from Oregon Health & Science University. The author has contributed to research in topics: Mutual information & Blind signal separation. The author has an hindex of 13, co-authored 18 publications receiving 3324 citations. Previous affiliations of Howard Hua Yang include University of Utah & University of Melbourne.

Papers
More filters
Proceedings Article
27 Nov 1995
TL;DR: A new on-line learning algorithm which minimizes a statistical dependency among outputs is derived for blind separation of mixed signals and has an equivariant property and is easily implemented on a neural network like model.
Abstract: A new on-line learning algorithm which minimizes a statistical dependency among outputs is derived for blind separation of mixed signals. The dependency is measured by the average mutual information (MI) of the outputs. The source signals and the mixing matrix are unknown except for the number of the sources. The Gram-Charlier expansion instead of the Edgeworth expansion is used in evaluating the MI. The natural gradient approach is used to minimize the MI. A novel activation function is proposed for the on-line learning algorithm which has an equivariant property and is easily implemented on a neural network like model. The validity of the new learning algorithm are verified by computer simulations.

2,145 citations

Proceedings Article
29 Nov 1999
TL;DR: The efficacy of the methods is illustrated on a radar signal analysis problem to find 2-D viewing coordinates for data visualization and to select inputs for a neural network classifier.
Abstract: Data visualization and feature selection methods are proposed based on the joint mutual information and ICA. The visualization methods can find many good 2-D projections for high dimensional data interpretation, which cannot be easily found by the other existing methods. The new variable selection method is found to be better in eliminating redundancy in the inputs than other methods based on simple mutual information. The efficacy of the methods is illustrated on a radar signal analysis problem to find 2-D viewing coordinates for data visualization and to select inputs for a neural network classifier.

313 citations

Journal ArticleDOI
TL;DR: It is shown by computer simulation that the convergence of the stochastic descent algorithms is improved by using the natural gradient and the adaptively estimated cumulants.
Abstract: There are two major approaches for blind separation: maximum entropy (ME) and minimum mutual information (MMI). Both can be implemented by the stochastic gradient descent method for obtaining the demixing matrix. The MI is the contrast function for blind separation; the entropy is not. To justify the ME, the relation between ME and MMI is first elucidated by calculating the first derivative of the entropy and proving that the mean subtraction is necessary in applying the ME and at the solution points determined by the MI, the ME will not update the demixing matrix in the directions of increasing the cross-talking. Second, the natural gradient instead of the ordinary gradient is introduced to obtain efficient algorithms, because the parameter space is a Riemannian space consisting of matrices. The mutual information is calculated by applying the Gram-Charlier expansion to approximate probability density functions of the outputs. Finally, we propose an efficient learning algorithm that incorporates with an adaptive method of estimating the unknown cumulants. It is shown by computer simulation that the convergence of the stochastic descent algorithms is improved by using the natural gradient and the adaptively estimated cumulants.

306 citations

Journal ArticleDOI
TL;DR: A two-layer perceptron is used as a de-mixing system to separate sources in non-linear mixture to derive the learning equations for the hidden layer.

165 citations

Journal ArticleDOI
TL;DR: The efficient natural gradient or relative gradient is extended to derive a set of on-line adaptive algorithms for single channel and combined multichannel linear blind source separation and time-domain deconvolution/equalization of additive, convolved signal mixtures.

100 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: EELAB as mentioned in this paper is a toolbox and graphic user interface for processing collections of single-trial and/or averaged EEG data of any number of channels, including EEG data, channel and event information importing, data visualization (scrolling, scalp map and dipole model plotting, plus multi-trial ERP-image plots), preprocessing (including artifact rejection, filtering, epoch selection, and averaging), Independent Component Analysis (ICA) and time/frequency decomposition including channel and component cross-coherence supported by bootstrap statistical methods based on data resampling.

17,362 citations

Journal ArticleDOI
TL;DR: This historical survey compactly summarizes relevant work, much of it from the previous millennium, review deep supervised learning, unsupervised learning, reinforcement learning & evolutionary computation, and indirect search for short programs encoding deep and large networks.

14,635 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
TL;DR: The basic theory and applications of ICA are presented, and the goal is to find a linear representation of non-Gaussian data so that the components are statistically independent, or as independent as possible.

8,231 citations

Book
06 Oct 2003
TL;DR: A fun and exciting textbook on the mathematics underpinning the most dynamic areas of modern science and engineering.
Abstract: Fun and exciting textbook on the mathematics underpinning the most dynamic areas of modern science and engineering.

8,091 citations