scispace - formally typeset
Search or ask a question
Author

Howard Matt

Bio: Howard Matt is an academic researcher from University of California, San Diego. The author has contributed to research in topics: Guided wave testing & Ultrasonic sensor. The author has an hindex of 8, co-authored 14 publications receiving 1001 citations.

Papers
More filters
Proceedings ArticleDOI
TL;DR: In this article, a semi-analytical finite element (SAFE) method for modeling wave propagation in waveguides of arbitrary cross-section is proposed, and the dispersive solutions are obtained in terms of phase velocity, group velocity, energy velocity, attenuation and cross-sectional mode shapes.

534 citations

Journal ArticleDOI
TL;DR: An approach based upon the employment of piezoelectric transducer rosettes is proposed for passive damage or impact location in anisotropic or geometrically complex structures as discussed by the authors.
Abstract: An approach based upon the employment of piezoelectric transducer rosettes is proposed for passive damage or impact location in anisotropic or geometrically complex structures. The rosettes are comprised of rectangular macro-fiber composite (MFC) transducers which exhibit a highly directive response to ultrasonic guided waves. The MFC response to flexural (A0) motion is decomposed into axial and transverse sensitivity factors, which allow extraction of the direction of an incoming wave using rosette principles. The wave source location in a plane is then simply determined by intersecting the wave directions detected by two rosettes. The rosette approach is applicable to anisotropic or geometrically complex structures where the conventional time-of-flight source location is challenging due to the direction-dependent wave velocity. The performance of the rosettes for source location is validated through pencil-lead breaks performed on an aluminum plate, an anisotropic CFRP laminate and a complex CFRP-honeycomb sandwich panel.

165 citations

Journal ArticleDOI
TL;DR: In this paper, the monitoring of the composite wing skin-to-spar joint in unmanned aerial vehicles using ultrasonic guided waves was investigated. But the authors focused on the ultrasonic strength of transmission through the joints.
Abstract: This article deals with the monitoring of the composite wing skin-to-spar joint in unmanned aerial vehicles using ultrasonic guided waves The study investigates simulated wing skin-to-spar joints with two different types of bond defects, namely poorly cured adhesive and disbonded interfaces The bond-sensitive feature considered is the ultrasonic strength of transmission through the joints The dispersive wave propagation problem is studied numerically by a semi-analytical finite element method that accounts for viscoelastic damping, and experimentally by ultrasonic testing that uses highly durable, flexible macro fiber composite transducers The discrete wavelet transform is also employed to de-noise and compress the ultrasonic measurements Both numerical and experimental tests confirm that the ultrasonic strength of transmission increases across the defected bonds

111 citations

Journal ArticleDOI
TL;DR: In this article, an on-board structural health monitoring system for UAV wings based on integrated ultrasonic sensors is proposed. And the assessment of bond state is based on monitoring the strength of transmission through the joints of selected guided modes.
Abstract: The monitoring of adhesively bonded joints by ultrasonic guided waves is the general topic of this paper. Specifically, composite-to-composite joints representative of the wing skin-to-spar bonds of unmanned aerial vehicles (UAVs) are examined. This research is the first step towards the development of an on-board structural health monitoring system for UAV wings based on integrated ultrasonic sensors. The study investigates two different lay-ups for the wing skin and two different types of bond defects, namely poorly cured adhesive and disbonded interfaces. The assessment of bond state is based on monitoring the strength of transmission through the joints of selected guided modes. The wave propagation problem is studied numerically by a semi-analytical finite element method that accounts for viscoelastic damping, and experimentally by ultrasonic testing that uses small PZT disks preferably exciting and detecting the single-plate s0 mode. Both the models and the experiments confirm that the ultrasonic ene...

110 citations

Journal ArticleDOI
TL;DR: In this paper, the fundamental response of surface-bonded piezoelectric sensors to ultrasonic waves is examined, starting with harmonic excitation fields and moving to broadband and narrowband excitation field.
Abstract: A fundamental understanding of the response of piezoelectric transducer patches to ultrasonic waves is of increasing interest to the field of structural health monitoring While analytical solutions exist on the interaction of a piezoelectric actuator with the generated Lamb waves, the behavior of a piezoelectric sensor has only been examined for the limited case of a piezo-actuated Lamb wave in a pitch-catch configuration This paper focuses on the fundamental response of surface-bonded piezoelectric sensors to ultrasonic waves The response to both Rayleigh waves and Lamb waves is examined, starting with harmonic excitation fields and moving to broadband and narrowband excitation fields General oblique incidence of the wave on rectangular sensors is treated first; parallel incidence is then derived as a particular case The solutions are developed analytically for the harmonic and the narrowband excitations, and semianalytically for the broadband excitation The results obtained can be used to design u

101 citations


Cited by
More filters
Book
11 Aug 2014
TL;DR: The semi-analytical finite element method (SAFE) has been used for guided wave modeling as discussed by the authors, which has been shown to be useful in the analysis and display of non-destructive testing.
Abstract: Preface Acknowledgments 1. Introduction 2. Dispersion principles 3. Unbounded isotropic and anisotropic media 4. Reflection and refraction 5. Oblique incidence 6. Waves in plates 7. Surface and subsurface waves 8. Finite element method for guided wave mechanics 9. The semi-analytical finite element method (SAFE) 10. Guided waves in hollow cylinders 11. Circumferential guided waves 12. Guided waves in layered structures 13. Source influence on guided wave excitation 14. Horizontal shear 15. Guided waves in anisotropic media 16. Guided wave phased arrays in piping 17. Guided waves in viscoelastic media 18. Ultrasonic vibrations 19. Guided wave array transducers 20. Introduction to guided wave nonlinear methods 21. Guided wave imaging methods Appendix A: ultrasonic nondestructive testing principles, analysis and display technology Appendix B: basic formulas and concepts in the theory of elasticity Appendix C: physically based signal processing concepts for guided waves Appendix D: guided wave mode and frequency selection tips.

823 citations

Journal ArticleDOI
TL;DR: An overview of piezoelectric polymers based on their operating principle is given in this paper, which includes three main categories: bulk polymers, piezocomposites and voided charged polymers.
Abstract: Polymer based MEMS and microfluidic devices have the advantages of mechanical flexibility, lower fabrication cost and faster processing over silicon based ones. Also, many polymer materials are considered biocompatible and can be used in biological applications. A valuable class of polymers for microfabricated devices is piezoelectric functional polymers. In addition to the normal advantages of polymers, piezoelectric polymers can be directly used as an active material in different transduction applications. This paper gives an overview of piezoelectric polymers based on their operating principle. This includes three main categories: bulk piezoelectric polymers, piezocomposites and voided charged polymers. State-of-the-art piezopolymers of each category are presented with a focus on fabrication techniques and material properties. A comparison between the different piezoelectric polymers and common inorganic piezoelectric materials (PZT, ZnO, AlN and PMN?PT) is also provided in terms of piezoelectric properties. The use of piezopolymers in different electromechanical devices is also presented. This includes tactile sensors, energy harvesters, acoustic transducers and inertial sensors.

778 citations

Journal ArticleDOI
TL;DR: In this article, an ultrasonic guided wave structural health monitoring (SHM) system was developed for aircraft wing inspection, where small, low-cost and light-weight piezoelectric (PZT) discs were bonded to various parts of the aircraft wing, in a form of relatively sparse arrays, for simulated cracks and corrosion monitoring.
Abstract: This work focuses on an ultrasonic guided wave structural health monitoring (SHM) system development for aircraft wing inspection. In part I of the study, a detailed description of a real aluminum wing specimen and some preliminary wave propagation tests on the wing panel are presented. Unfortunately, strong attenuation and scattering impede guided waves for large-area inspection. Nevertheless, small, low-cost and light-weight piezoelectric (PZT) discs were bonded to various parts of the aircraft wing, in a form of relatively sparse arrays, for simulated cracks and corrosion monitoring. The PZT discs take turns generating and receiving ultrasonic guided waves. Pair-wise through-transmission waveforms collected at normal conditions served as baselines, and subsequent signals collected at defected conditions such as rivet cracks or corrosion detected the presence of a defect and its location with a novel correlation analysis based technique called RAPID (reconstruction algorithm for probabilistic inspection of defects). The effectiveness of the algorithm was tested with several case studies in a laboratory environment. It showed good performance for defect detection, size estimation and localization in complex aircraft wing structures.

670 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide a state-of-the-art review of guided wave based structural health monitoring (SHM) and highlight the future directions and open areas of research in guided wave-based SHM.
Abstract: The paper provides a state of the art review of guided wave based structural health monitoring (SHM). First, the fundamental concepts of guided wave propagation and its implementation for SHM is explained. Following sections present the different modeling schemes adopted, developments in the area of transducers for generation, and sensing of wave, signal processing and imaging technique, statistical and machine learning schemes for feature extraction. Next, a section is presented on the recent advancements in nonlinear guided wave for SHM. This is followed by section on Rayleigh and SH waves. Next is a section on real-life implementation of guided wave for industrial problems. The paper, though briefly talks about the early development for completeness,. is primarily focussed on the recent progress made in the last decade. The paper ends by discussing and highlighting the future directions and open areas of research in guided wave based SHM.

664 citations

Proceedings ArticleDOI
TL;DR: In this article, a semi-analytical finite element (SAFE) method for modeling wave propagation in waveguides of arbitrary cross-section is proposed, and the dispersive solutions are obtained in terms of phase velocity, group velocity, energy velocity, attenuation and cross-sectional mode shapes.

534 citations