scispace - formally typeset
Search or ask a question
Author

Howard P. Hodson

Other affiliations: Rolls-Royce Holdings
Bio: Howard P. Hodson is an academic researcher from University of Cambridge. The author has contributed to research in topics: Boundary layer & Turbine blade. The author has an hindex of 50, co-authored 226 publications receiving 7118 citations. Previous affiliations of Howard P. Hodson include Rolls-Royce Holdings.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the fluid flow and heat transfer features of cellular metal lattice structures made from copper by transient liquid phase (TLP) bonding and brazing of plane weave copper meshes (screens) were experimentally characterized under steady-state forced air convection.

282 citations

Journal ArticleDOI
TL;DR: In this paper, the authors measured the thermal conductivity of steel alloy FeCrAlY (Fe-20-wt.% CrAlY) foams with a range of pore sizes and porosities under both vacuum and atmospheric conditions.
Abstract: The effective thermal conductivity of steel alloy FeCrAlY (Fe—20 wt.% Cr—5 wt.% Al—2 wt.% Y—20 wt.%) foams with a range of pore sizes and porosities was measured between 300 and 800 K, under both vacuum and atmospheric conditions. The results show that the effective thermal conductivity increases rapidly as temperature is increased, particularly in the higher temperature range (500–800 K) where the transport of heat is dominated by thermal radiation. The effective conductivity at temperature 800 K can be three times higher than that at room temperature (300 K). Results obtained under vacuum conditions reveal that the effective conductivity increases with increasing pore size or decreasing porosity. The contribution of natural convection to heat conduction was found to be significant, with the effective thermal conductivity at ambient pressure twice the value of vacuum condition. The results also show that natural convection in metal foams is strongly dependent upon porosity.

188 citations

Journal ArticleDOI
TL;DR: In this article, the boundary layer characteristics of axial-flow compressors and turbine blading were analyzed using hot wire probes, and the results showed large extents of laminar and transitional flow on the suction surface.
Abstract: Comprehensive experiments and computational analyses were conducted to understand boundary layer development on airfoil surfaces in multistage, axial-flow compressors and LP turbines. The tests were run over a broad range of Reynolds numbers and loading levels in large, low-speed research facilities which simulate the relevant aerodynamic features of modern engine components. Measurements of boundary layer characteristics were obtained by using arrays of densely packed, hot-film gauges mounted on airfoil surfaces and by making boundary layer surveys with hot wire probes. Computational predictions were made using both steady flow codes and an unsteady flow code. This is the first time that time-resolved boundary layer measurements and detailed comparisons of measured data with predictions of boundary layer codes have been reported for multistage compressor and turbine blading. Part 1 of this paper summarizes all of our experimental findings by using sketches to show how boundary layers develop on compressor and turbine blading. Parts 2 and 3 present the detailed experimental results for the compressor and turbine, respectively. Part 4 presents computational analyses and discusses comparisons with experimental data. Readers not interested in experimental detail can go directly from Part 1 to Part 4. For both compressor and turbine blading, the experimental results show large extents of laminar and transitional flow on the suction surface of embedded stages, with the boundary layer generally developing along two distinct but coupled paths. One path lies approximately under the wake trajectory while the other lies between wakes. Along both paths the boundary layer clearly goes from laminar to transitional to turbulent. The wake path and the non-wake path are coupled by a calmed region, which, being generated by turbulent spots produced in the wake path, is effective in suppressing flow separation and delaying transition in the non-wake path. The location and strength of the various regions within the paths, such as wake-induced transitional and turbulent strips, vary with Reynolds number, loading level, and turbulence intensity. On the pressure surface, transition takes place near the leading edge for the blading tested. For both surfaces, bypass transition and separated-flow transition were observed. Classical Tollmien-Schlichting transition did not play a significant role. Comparisons of embedded and first-stage results were also made to assess the relevance of applying single-stage and cascade studies to the multistage environment. Although doing well under certain conditions, the codes in general could not adequately predict the onset and extent of transition in regions affected by calming. However, assessments are made to guide designers in using current predictive schemes to compute boundary layer features and obtain reasonable loss predictions.

173 citations

Journal ArticleDOI
TL;DR: In this article, an analytical model based on geometric optics laws, diffraction theory and metal foam morphology is developed to predict the radiative transfer, with cell size and porosity identified as the two key parameters that dictate the foam radiative properties.

167 citations

Journal ArticleDOI
TL;DR: In this paper, the authors summarized the process of wake-induced boundary-layer transition in low-pressure turbines and the loss generation processes that result, focusing on how the effects of wakes may be exploited to control loss genera.
Abstract: ▪ Abstract The flow in turbomachines is unsteady due to the relative motion of the rows of blades. In the low-pressure turbine, the wakes from the upstream bladerows provide the dominant source of unsteadiness. Because much of the blade-surface boundary-layer flow is laminar, one of the most important consequences of this unsteadiness is the interaction of the wakes with the suction-side boundary layer of a downstream blade. This is important because the blade suction–side boundary layers are responsible for most of the loss of efficiency and because the combined effects of random (wake turbulence) and periodic disturbances (wake velocity defect and pressure fields) cause the otherwise laminar boundary layer to undergo transition and eventually become turbulent. This article summarizes the process of wake-induced boundary-layer transition in low-pressure turbines and the loss generation processes that result. Particular emphasis is placed on how the effects of wakes may be exploited to control loss genera...

159 citations


Cited by
More filters
Book ChapterDOI
01 Jan 2022

818 citations

Journal ArticleDOI
TL;DR: A state-of-the-art review of the applications of hierarchically structured porous materials in energy conversion and storage is presented in this paper, where hierarchical porosity and structures have been heavily involved in newly developed energy storage and conversion systems, showing the importance of macrochannels in light related systems such as photocatalysis and photovoltaics.
Abstract: Materials with hierarchical porosity and structures have been heavily involved in newly developed energy storage and conversion systems. Because of meticulous design and ingenious hierarchical structuration of porosities through the mimicking of natural systems, hierarchically structured porous materials can provide large surface areas for reaction, interfacial transport, or dispersion of active sites at different length scales of pores and shorten diffusion paths or reduce diffusion effect. By the incorporation of macroporosity in materials, light harvesting can be enhanced, showing the importance of macrochannels in light related systems such as photocatalysis and photovoltaics. A state-of-the-art review of the applications of hierarchically structured porous materials in energy conversion and storage is presented. Their involvement in energy conversion such as in photosynthesis, photocatalytic H 2 production, photocatalysis, or in dye sensitized solar cells (DSSCs) and fuel cells (FCs) is discussed. Energy storage technologies such as Li-ions batteries, supercapacitors, hydrogen storage, and solar thermal storage developed based on hierarchically porous materials are then discussed. The links between the hierarchically porous structures and their performances in energy conversion and storage presented can promote the design of the novel structures with advanced properties.

784 citations

Journal ArticleDOI
TL;DR: In this paper, lattice truss topologies with open cell structures were evaluated for structural load support in light-weight sandwich panel structures, and three classes of periodic cellular metals can be fabricated from a wide variety of structural alloys.
Abstract: Periodic cellular metals with honeycomb and corrugated topologies are widely used for the cores of light weight sandwich panel structures. Honeycombs have closed cell pores and are well suited for thermal protection while also providing efficient load support. Corrugated core structures provide less efficient and highly anisotropic load support, but enable cross flow heat exchange opportunities because their pores are continuous in one direction. Recent advances in topology design and fabrication have led to the emergence of lattice truss structures with open cell structures. These three classes of periodic cellular metals can now be fabricated from a wide variety of structural alloys. Many topologies are found to provide adequate stiffness and strength for structural load support when configured as the cores of sandwich panels. Sandwich panels with core relative densities of 2-10% and cell sizes in the millimetre range are being assessed for use as multifunctional structures. The open, three-dimensional interconnected pore networks of lattice truss topologies provide opportunities for simultaneously supporting high stresses while also enabling cross flow heat exchange. These highly compressible structures also provide opportunities for the mitigation of high intensity dynamic loads created by impacts and shock waves in air or water. By filling the voids with polymers and hard ceramics, these structures have also been found to offer significant resistance to penetration by projectiles.

716 citations

Journal ArticleDOI
TL;DR: In this paper, a harmonic balance technique for modeling unsteady nonlinear e ows in turbomachinery is presented, which exploits the fact that many unstaidy e ow variables are periodic in time.
Abstract: A harmonic balance technique for modeling unsteady nonlinear e ows in turbomachinery is presented. The analysis exploits the fact that many unsteady e ows of interest in turbomachinery are periodic in time. Thus, the unsteady e ow conservation variables may be represented by a Fourier series in time with spatially varying coefe cients. This assumption leads to a harmonic balance form of the Euler or Navier ‐Stokes equations, which, in turn, can be solved efe ciently as a steady problem using conventional computational e uid dynamic (CFD) methods, including pseudotime time marching with local time stepping and multigrid acceleration. Thus, the method is computationally efe cient, at least one to two orders of magnitude faster than conventional nonlinear time-domain CFD simulations. Computational results for unsteady, transonic, viscous e ow in the front stage rotor of a high-pressure compressor demonstrate that even strongly nonlinear e ows can be modeled to engineering accuracy with a small number of terms retained in the Fourier series representation of the e ow. Furthermore, in some cases, e uid nonlinearities are found to be important for surprisingly small blade vibrations.

673 citations

Journal ArticleDOI
TL;DR: A review of the literature on the effects of freestream turbulence, surface curvature, and hole shape on the performance of film cooling is presented in this article. But, it is difficult to predict film cooling performance because of the inherent complex flowfields along the airfoil component surfaces in turbine engines.
Abstract: The durability of gas turbine engines is strongly dependent on the component temperatures. For the combustor and turbine airfoils and endwalls, film cooling is used extensively to reduce component temperatures. Film cooling is a cooling method used in virtually all of today's aircraft turbine engines and in many power-generation turbine engines and yet has very difficult phenomena to predict. The interaction of jets-in-crossflow, which is representative of film cooling, results in a shear layer that leads to mixing and a decay in the cooling performance along a surface. This interaction is highly dependent on the jet-to-crossflow mass and momentum flux ratios. Film-cooling performance is difficult to predict because of the inherent complex flowfields along the airfoil component surfaces in turbine engines. Film cooling is applied to nearly all of the external surfaces associated with the airfoils that are exposed to the hot combustion gasses such as the leading edges, main bodies, blade tips, and endwalls. In a review of the literature, it was found that there are strong effects of freestream turbulence, surface curvature, and hole shape on the performance of film cooling. Film cooling is reviewed through a discussion of the analyses methodologies, a physical description, and the various influences on film-cooling performance.

636 citations