scispace - formally typeset
Search or ask a question
Author

Howard Saltsburg

Bio: Howard Saltsburg is an academic researcher from Tufts University. The author has contributed to research in topics: Catalysis & Water-gas shift reaction. The author has an hindex of 14, co-authored 16 publications receiving 4316 citations.

Papers
More filters
Journal ArticleDOI
15 Aug 2003-Science
TL;DR: It is reported here that for the class of nanostructured gold– or platinum–cerium oxide catalysts, which are active for the water-gas shift reaction, metal nanoparticles do not participate in the reaction.
Abstract: Traditional analysis of reactions catalyzed by supported metals involves the structure of the metallic particles. However, we report here that for the class of nanostructured gold- or platinum-cerium oxide catalysts, which are active for the water-gas shift reaction, metal nanoparticles do not participate in the reaction. Nonmetallic gold or platinum species strongly associated with surface cerium-oxygen groups are responsible for the activity.

2,616 citations

Journal ArticleDOI
24 Sep 2010-Science
TL;DR: Alkali ions added in small amounts activate platinum adsorbed on alumina or silica for the low-temperature water-gas shift (WGS) reaction (H2O + CO → H2 + CO2) used for producing H2.
Abstract: We report that alkali ions (sodium or potassium) added in small amounts activate platinum adsorbed on alumina or silica for the low-temperature water-gas shift (WGS) reaction (H 2 O + CO → H 2 + CO 2 ) used for producing H 2 . The alkali ion–associated surface OH groups are activated by CO at low temperatures (~100°C) in the presence of atomically dispersed platinum. Both experimental evidence and density functional theory calculations suggest that a partially oxidized Pt-alkali-O x (OH) y species is the active site for the low-temperature Pt-catalyzed WGS reaction. These findings are useful for the design of highly active and stable WGS catalysts that contain only trace amounts of a precious metal without the need for a reducible oxide support such as ceria.

603 citations

Journal ArticleDOI
TL;DR: In this article, the authors report on the high activity and stability of low-content gold-cerium oxide catalysts for the water-gas shift reaction (WGS) and show that the determining factor for the retention of active gold in ceria is the surface properties of the latter.
Abstract: We report here on the high activity and stability of low-content gold–cerium oxide catalysts for the water–gas shift reaction (WGS). These catalysts are reversible in cyclic reduction–oxidation treatment up to 400 8C, are non-pyrophoric, and are thus potential candidates for application to hydrogen generation for fuel cell power production. Low-content (0.2–0.9 at.%) gold–ceria samples were prepared by singlepot synthesis by the urea gelation/coprecipitation method; and by sodium cyanide leaching of high-content (2–8 at.%) gold–ceria materials prepared by various techniques. The low-content gold–ceria catalysts are free of metallic gold nanoparticles. Gold is present in oxidized form, as verified by a variety of analytical techniques. However, these materials display the same WGS activity as the high-content gold ones, and remain free of gold nanoparticles after use in a reaction gas stream composed of 11% CO–26% H2O–26% H2–7% CO2–balance He up to 300 8C. We show that the determining factor for the retention of active gold in ceria is the surface properties of the latter. Measurements of lattice constant expansion indicate gold ion substitution in the ceria lattice. The turnover frequency of WGS under the assumption of fully dispersed gold is the same for a variety of low-content gold–ceria preparations. The stability of gold–ceria in various gas compositions and temperatures was good. The most serious stability issue is formation of cerium hydroxycarbonate in shutdown operation. # 2004 Elsevier B.V. All rights reserved.

387 citations

Journal ArticleDOI
TL;DR: In this article, the authors reported the catalytic properties of nanostructured Au-ceria for low-temperature water-gas shift (LTS) reaction and showed that the presence of gold greatly enhances the OSC of ceria.

281 citations

Journal ArticleDOI
TL;DR: In this article, low-content gold-ceria catalysts were used for the PROX reaction in a realistic fuel gas mixture containing 1% CO −0.5% O 2 −50% H 2 O −10% H2 O −15% CO 2.
Abstract: Low-content ( 2 -TPR, was used to normalize the WGS reaction rates. Cyclic temperature-programmed reduction with intermittent reoxidation showed that the surface structures of gold-ceria catalysts are highly reversible. Considerable reoxidation by oxygen or H 2 O can occur even at ambient conditions. The stability of low-content gold-ceria catalysts for the PROX reaction in a realistic fuel gas mixture containing 1% CO–0.5% O 2 –50% H 2 –10% H 2 O–15% CO 2 –He was excellent. No drop in activity or selectivity was found in cyclic operation up to 150 °C.

220 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Hydrogen Production by Water−Gas Shift Reaction 4056 4.1.
Abstract: 1.0. Introduction 4044 2.0. Biomass Chemistry and Growth Rates 4047 2.1. Lignocellulose and Starch-Based Plants 4047 2.2. Triglyceride-Producing Plants 4049 2.3. Algae 4050 2.4. Terpenes and Rubber-Producing Plants 4052 3.0. Biomass Gasification 4052 3.1. Gasification Chemistry 4052 3.2. Gasification Reactors 4054 3.3. Supercritical Gasification 4054 3.4. Solar Gasification 4055 3.5. Gas Conditioning 4055 4.0. Syn-Gas Utilization 4056 4.1. Hydrogen Production by Water−Gas Shift Reaction 4056

7,067 citations

Journal ArticleDOI
TL;DR: Density functional theory calculations show that the high catalytic activity correlates with the partially vacant 5d orbitals of the positively charged, high-valent Pt atoms, which help to reduce both the CO adsorption energy and the activation barriers for CO oxidation.
Abstract: Platinum-based heterogeneous catalysts are critical to many important commercial chemical processes, but their efficiency is extremely low on a per metal atom basis, because only the surface active-site atoms are used. Catalysts with single-atom dispersions are thus highly desirable to maximize atom efficiency, but making them is challenging. Here we report the synthesis of a single-atom catalyst that consists of only isolated single Pt atoms anchored to the surfaces of iron oxide nanocrystallites. This single-atom catalyst has extremely high atom efficiency and shows excellent stability and high activity for both CO oxidation and preferential oxidation of CO in H-2. Density functional theory calculations show that the high catalytic activity correlates with the partially vacant 5d orbitals of the positively charged, high-valent Pt atoms, which help to reduce both the CO adsorption energy and the activation barriers for CO oxidation.

4,446 citations

Journal ArticleDOI
TL;DR: Recent advances in preparation, characterization, and catalytic performance of SACs are highlighted, with a focus on single atoms anchored to metal oxides, metal surfaces, and graphene, offering the potential for applications in a variety of industrial chemical reactions.
Abstract: Supported metal nanostructures are the most widely used type of heterogeneous catalyst in industrial processes. The size of metal particles is a key factor in determining the performance of such catalysts. In particular, because low-coordinated metal atoms often function as the catalytically active sites, the specific activity per metal atom usually increases with decreasing size of the metal particles. However, the surface free energy of metals increases significantly with decreasing particle size, promoting aggregation of small clusters. Using an appropriate support material that strongly interacts with the metal species prevents this aggregation, creating stable, finely dispersed metal clusters with a high catalytic activity, an approach industry has used for a long time. Nevertheless, practical supported metal catalysts are inhomogeneous and usually consist of a mixture of sizes from nanoparticles to subnanometer clusters. Such heterogeneity not only reduces the metal atom efficiency but also frequent...

3,051 citations

Journal ArticleDOI
TL;DR: This Review will compare the results obtained from different systems and try to give a picture on how different types of metal species work in different reactions and give perspectives on the future directions toward better understanding of the catalytic behavior of different metal entities in a unifying manner.
Abstract: Metal species with different size (single atoms, nanoclusters, and nanoparticles) show different catalytic behavior for various heterogeneous catalytic reactions. It has been shown in the literature that many factors including the particle size, shape, chemical composition, metal–support interaction, and metal–reactant/solvent interaction can have significant influences on the catalytic properties of metal catalysts. The recent developments of well-controlled synthesis methodologies and advanced characterization tools allow one to correlate the relationships at the molecular level. In this Review, the electronic and geometric structures of single atoms, nanoclusters, and nanoparticles will be discussed. Furthermore, we will summarize the catalytic applications of single atoms, nanoclusters, and nanoparticles for different types of reactions, including CO oxidation, selective oxidation, selective hydrogenation, organic reactions, electrocatalytic, and photocatalytic reactions. We will compare the results o...

2,700 citations

Journal ArticleDOI
15 Aug 2003-Science
TL;DR: It is reported here that for the class of nanostructured gold– or platinum–cerium oxide catalysts, which are active for the water-gas shift reaction, metal nanoparticles do not participate in the reaction.
Abstract: Traditional analysis of reactions catalyzed by supported metals involves the structure of the metallic particles. However, we report here that for the class of nanostructured gold- or platinum-cerium oxide catalysts, which are active for the water-gas shift reaction, metal nanoparticles do not participate in the reaction. Nonmetallic gold or platinum species strongly associated with surface cerium-oxygen groups are responsible for the activity.

2,616 citations