scispace - formally typeset
Search or ask a question
Author

Hsiang Yu Chan

Bio: Hsiang Yu Chan is an academic researcher from National Taiwan University. The author has contributed to research in topics: Propylene oxide & Propionaldehyde. The author has an hindex of 2, co-authored 2 publications receiving 40 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a series of photocatalysts including SiO2, TiO2 and V-Ti/MCM-41 were evaluated for photo-epoxidation of propylene.

30 citations

Journal ArticleDOI
TL;DR: In this paper, the photocatalytic and thermal epoxidations of cyclohexene in the presence of tert-butyl hydroperoxide (t-BuOOH) were investigated with real-time monitored by NIR-Raman spectroscopy.
Abstract: A series of V- and/or Ti-loading MCM-41 catalysts are successfully synthesized with a hydrothermal method. The photocatalytic and thermal epoxidations of cyclohexene in the presence of tert-butyl hydroperoxide (t-BuOOH) were investigated with real-time monitored by NIR-Raman spectroscopy. It suggests that both V- and Ti-loading can be responsible for the cyclohexene epoxidation. Moreover, the complementary behavior of V- and Ti-loading may be related to a similar role of activation. Interestingly, the progress of the photo-epoxidation on V0.25Ti2/MCM-41 photocatalyst was monitored by changes in intensity of the characteristic Raman bands without interference from the UV-light irradiation. The result, for the first time, reveals that cyclohexene was directly photo-epoxidized to 1,2-epoxycyclohexane by t-BuOOH during the reaction. A possible mechanism of cyclohexene photo-epoxidation is also proposed for this study.

13 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Comprehensive and successful strategies for enhancing the selectivity in photocatalysis are abridged to reinvigorate and stimulate future investigations.
Abstract: Photocatalysis has been invariably considered as an unselective process (especially in water) for a fairly long period of time, and the investigation on selective photocatalysis has been largely neglected. In recent years, the field of selective photocatalysis is developing rapidly and now extended to several newer applications. This review focuses on the overall strategies which can improve the selectivity of photocatalysis encompassing a wide variety of photocatalysts, and modifications thereof, as well as the related vital processes of industrial significance such as reduction and oxidation of organics, inorganics, and CO2 transformation. Comprehensive and successful strategies for enhancing the selectivity in photocatalysis are abridged to reinvigorate and stimulate future investigations. In addition, nonsemiconductor type photocatalysts, such as Ti–Si molecular sieves and carbon quantum dots (CQDs), are also briefly appraised in view of their special role in special selective photocatalysis, namely e...

579 citations

Journal ArticleDOI
TL;DR: In the presence of only molecular oxygen as oxidant and in absence of reducing agents, a number of liquid-phase and gas-phase catalytic reactions have been reported as discussed by the authors.
Abstract: The direct oxidation of propylene to propylene oxide (PO) using molecular oxygen has many advantages over existing chlorohydrin and hydroperoxide process, which produce side products and require complex purification schemes. Recent advances in liquid-phase and gas-phase catalytic oxidation of propylene in the presence of only molecular oxygen as oxidant and in absence of reducing agents are summarized. Liquid-phase PO processes involving soluble or insoluble Mo, W, or V catalysts have been reported which provide moderate conversions and selectivities, but these likely involve autoxidation by homogeneous chain reactions. Gas-phase PO catalysts have been mostly Ag-, Cu-, or TiO2-based substances, although other compositions such as Au-, MoO3-, Bi-based catalysts and photocatalysts have also been suggested as possibilities. The Ag catalysts differ from those used for ethylene oxide production in having high Ag contents and numerous additives. The additives are solid-phase alkali metals, alkaline earth metals...

141 citations

Journal ArticleDOI
TL;DR: In this paper, a charge transfer of S-scheme heterojunctions involving a reduction and oxidation photocatalyst in staggered band arrangement with Fermi level differences is discussed.
Abstract: Solar radiation is a sustainable, unlimited source of energy for electricity and chemical reactions, yet the conversion efficiency of actual processes is limited and controlled by photocarriers migration and separation. Enhancing the conversion efficiency would require to suppress the recombination of photogenerated electron–hole pairs and improve the low redox potentials. This can be done during the growth of step-scheme (S-scheme) heterojunctions. Here we review the charge transfer of S-scheme heterojunctions involving a reduction and oxidation photocatalyst in staggered band arrangement with Fermi level differences. We present factors determining the validation of the S-scheme mechanism with respective characterization techniques, including in situ and ex situ experiments, and theoretical studies. We show mechanistic drawbacks of traditional photocatalytic systems to highlight the advantages of S-scheme photocatalysts. We describe co-catalyst loading, bandgap tuning, and interfacial optimization that ultimately achieve highly efficient photocatalysis. Last, application for water splitting, CO2 conversion, pollutant degradation, bacterial inactivation and others is discussed.

129 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review the photocatalytic mechanism, properties, synthesis and application to wastewater treatment of cadmium sulfide (CdS) photocatalyst.
Abstract: Global energy demand and pollution are calling for advanced materials such as visible light semiconductor photocatalysts. In particular, cadmium sulfide (CdS) appears promising due to its tunable bandgap, high absorption of visible light and excellent optical properties. Here we review the photocatalytic mechanism, properties, synthesis and application to wastewater treatment of CdS photocatalysts. Strategies to improve photocatalytic performance include heteroatom doping, heterojunction formation, morphology and crystallinity modification, hybridization with co-catalysts and the use of carbon materials.

125 citations

Journal ArticleDOI
TL;DR: In this article, a review highlights major advances in the use of Raman spectroscopy for the characterization of heterogeneous catalysts made during the past decade, including the development of new methods and potential directions of research for applying Raman Spectroscopy to working catalysts.
Abstract: Gaining insight into the mode of operation of heterogeneous catalysts is of great scientific and economic interest. Raman spectroscopy has proven its potential as a powerful vibrational spectroscopic technique for a fundamental and molecular-level characterization of catalysts and catalytic reactions. Raman spectra provide important insight into reaction mechanisms by revealing specific information on the catalysts' (defect) structure in the bulk and at the surface, as well as the presence of adsorbates and reaction intermediates. Modern Raman instrumentation based on single-stage spectrometers allows high throughput and versatility in design of in situ/operando cells to study working catalysts. This review highlights major advances in the use of Raman spectroscopy for the characterization of heterogeneous catalysts made during the past decade, including the development of new methods and potential directions of research for applying Raman spectroscopy to working catalysts. The main focus will be on gas-solid catalytic reactions, but (photo)catalytic reactions in the liquid phase will be touched on if it appears appropriate. The discussion begins with the main instrumentation now available for applying vibrational Raman spectroscopy to catalysis research, including in situ/operando cells for studying gas-solid catalytic processes. The focus then moves to the different types of information available from Raman spectra in the bulk and on the surface of solid catalysts, including adsorbates and surface depositions, as well as the use of theoretical calculations to facilitate band assignments and to describe (resonance) Raman effects. This is followed by a presentation of major developments in enhancing the Raman signal of heterogeneous catalysts by use of UV resonance Raman spectroscopy, surface-enhanced Raman spectroscopy (SERS), and shell-isolated nanoparticle surface-enhanced Raman spectroscopy (SHINERS). The application of time-resolved Raman studies to structural and kinetic characterization is then discussed. Finally, recent developments in spatially resolved Raman analysis of catalysts and catalytic processes are presented, including the use of coherent anti-Stokes Raman spectroscopy (CARS) and tip-enhanced Raman spectroscopy (TERS). The review concludes with an outlook on potential future developments and applications of Raman spectroscopy in heterogeneous catalysis.

99 citations