scispace - formally typeset
Search or ask a question
Author

Hsien-Ping Feng

Bio: Hsien-Ping Feng is an academic researcher from TSMC. The author has contributed to research in topics: Layer (electronics) & Electroplating. The author has an hindex of 8, co-authored 24 publications receiving 1090 citations. Previous affiliations of Hsien-Ping Feng include Massachusetts Institute of Technology.

Papers
More filters
Journal ArticleDOI
TL;DR: A promising flat-panel solar thermal to electric power conversion technology based on the Seebeck effect and high thermal concentration is demonstrated, thus enabling wider applications and opening up a promising new approach which has the potential to achieve cost-effective conversion of solar energy into electricity.
Abstract: The conversion of sunlight into electricity has been dominated by photovoltaic and solar thermal power generation. A highly efficient solar to electric energy conversion device based on nanostructured thermoelectric materials and high solar concentration is now demonstrated. The results show potential for cost effective solar thermoelectric generation.

1,011 citations

Patent
30 Mar 2004
TL;DR: In this article, a method of forming a copper interconnect in a dual damascene scheme is described, where a diffusion barrier layer and seed layer are sequentially formed on the sidewalls and bottoms of a trench and via in a dielectric layer, a first copper layer is deposited by a first ECP process at a 10 mA/cm 2 current density to fill the via and part of the trench.
Abstract: A method of forming a copper interconnect in a dual damascene scheme is described. After a diffusion barrier layer and seed layer are sequentially formed on the sidewalls and bottoms of a trench and via in a dielectric layer, a first copper layer is deposited by a first ECP process at a 10 mA/cm 2 current density to fill the via and part of the trench. A first anneal step is performed to remove carbon impurities and optionally includes a H 2 plasma treatment. A second ECP process with a first deposition step at a 40 mA/cm 2 current density and second deposition step at a 60 mA/cm 2 current density is used to deposit a second copper layer that overfills the trench. After a second anneal step, a CMP process planarizes the copper layers. Fewer copper defects, reduced S, Cl, and C impurities, and improved Rc performance are achieved by this method.

45 citations

Patent
12 Nov 2004
TL;DR: In this paper, a method and apparatus for enhancing copper film quality with a two-step deposition is described, which may include electrochemical plating, annealing the first copper film at a desired temperature for a duration of time to remove any impurities, and then depositing a second copper film and re-annealing it.
Abstract: The disclosure relates to a method and apparatus for enhancing copper film quality with a two-step deposition. The two step deposition may include depositing a first copper film by electrochemical plating, annealing the first copper film at a desired temperature for a duration of time to remove any impurities, depositing a second copper film and annealing the second copper film for a duration of time to remove impurities. The second copper film can be deposited by electrochemical plating without HCl/C-based additive. The second copper film can also be deposited by sputtering to avoid impurities including C, Cl and S.

27 citations

Journal ArticleDOI
TL;DR: In this article, secondary ion mass spectrometry (SIMS) was used to examine the effects of plating current density and annealing temperature on the nature of electroplated copper (Cu) films.
Abstract: This study uses secondary-ion-mass spectrometry to examine the effects of plating current density and annealing temperature on the nature of electroplated copper (Cu) films. The experimental results reveal that high levels of impurities, such as C, O, S, and Cl, are incorporated into Cu deposits at the lower current density region while superfilling occurs. The C and O impurities can be released from the plated films by thermal annealing, while S and Cl cannot. This work proposes a possible mechanism based on bond strength to explain the phenomena. Rapid C and O desorption is observed when the films are first cycled to 220°C immediately after electroplating. The activation energy of C desorption is found to be approximately 9.8kJ∕mol. For Cu electroplating, this investigation suggests that high plating current density and an adequate annealing temperature are required to reduce impurities.

25 citations

Patent
24 Feb 2011
TL;DR: In this article, methods of forming conductive metal layers on substrates are disclosed which employ a seed layer to enhance bonding, especially to smooth, low-roughness or hydrophobic substrates.
Abstract: Methods of forming a conductive metal layers on substrates are disclosed which employ a seed layer to enhance bonding, especially to smooth, low-roughness or hydrophobic substrates. In one aspect of the invention, the seed layer can be formed by applying nanoparticles onto a surface of the substrate; and the metallization is achieved by electroplating an electrically conducting metal onto the seed layer, whereby the nanoparticles serve as nucleation sites for metal deposition. In another approach, the seed layer can be formed by a self-assembling linker material, such as a sulfur-containing silane material.

25 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The latest successful examples of flexible and stretchable physical sensors for the detection of temperature, pressure, and strain, as well as their novel structures, technological innovations, and challenges, are reviewed.
Abstract: Flexible and stretchable physical sensors that can measure and quantify electrical signals generated by human activities are attracting a great deal of attention as they have unique characteristics, such as ultrathinness, low modulus, light weight, high flexibility, and stretchability. These flexible and stretchable physical sensors conformally attached on the surface of organs or skin can provide a new opportunity for human-activity monitoring and personal healthcare. Consequently, in recent years there has been considerable research effort devoted to the development of flexible and stretchable physical sensors to fulfill the requirements of future technology, and much progress has been achieved. Here, the most recent developments of flexible and stretchable physical sensors are described, including temperature, pressure, and strain sensors, and flexible and stretchable sensor-integrated platforms. The latest successful examples of flexible and stretchable physical sensors for the detection of temperature, pressure, and strain, as well as their novel structures, technological innovations, and challenges, are reviewed first. In the next section, recent progress regarding sensor-integrated wearable platforms is overviewed in detail. Some of the latest achievements regarding self-powered sensor-integrated wearable platform technologies are also reviewed. Further research direction and challenges are also proposed to develop a fully sensor-integrated wearable platform for monitoring human activity and personal healthcare in the near future.

1,469 citations

Journal ArticleDOI
22 Jan 2016-Science
TL;DR: Lewis reviews the status of solar thermal and solar fuels approaches for harnessing solar energy, as well as technology gaps for achieving cost-effective scalable deployment combined with storage technologies to provide reliable, dispatchable energy.
Abstract: Major developments, as well as remaining challenges and the associated research opportunities, are evaluated for three technologically distinct approaches to solar energy utilization: solar electricity, solar thermal, and solar fuels technologies. Much progress has been made, but research opportunities are still present for all approaches. Both evolutionary and revolutionary technology development, involving foundational research, applied research, learning by doing, demonstration projects, and deployment at scale will be needed to continue this technology-innovation ecosystem. Most of the approaches still offer the potential to provide much higher efficiencies, much lower costs, improved scalability, and new functionality, relative to the embodiments of solar energy-conversion systems that have been developed to date.

1,416 citations

Journal ArticleDOI
TL;DR: In this article, Minnich et al. reviewed the progress made in thermoelectrics over the past two years on charge and heat carrier transport, strategies to improve the thermiolectric figure of merit, with new discussions on device physics and applications.
Abstract: This review is an update of a previous review (A. J. Minnich, et al., Energy Environ. Sci., 2009, 2, 466) published two years ago by some of the co-authors, focusing on progress made in thermoelectrics over the past two years on charge and heat carrier transport, strategies to improve the thermoelectric figure of merit, with new discussions on device physics and applications, and assessing challenges on these topics. Understanding of phonon transport in bulk materials has advanced significantly as the first-principles calculations are applied to thermoelectric materials, and experimental tools are being developed. Some new strategies have been developed to improve electron transport in thermoelectric materials. Fundamental questions on phonon and electron transport across interfaces and in thermoelectric materials remain. With thermoelectric materials reaching high ZT values well above one, the field is ready to take a step forward and go beyond the materials' figure of merit. Developing device contacts and module fabrication techniques, developing a platform for efficiency measurements, and identifying applications are becoming increasingly important for the future of thermoelectrics.

1,049 citations

Journal ArticleDOI
04 Nov 2011-Science
TL;DR: The intrinsic optoelectronic response of high-quality dual-gated monolayer and bilayer graphene p-n junction devices is reported, providing strong evidence that nonlocal hot carrier transport, rather than the photovoltaic effect, dominates the intrinsic photoresponse in graphene.
Abstract: We report on the intrinsic optoelectronic response of high-quality dual-gated monolayer and bilayer graphene p-n junction devices. Local laser excitation (of wavelength 850 nanometers) at the p-n interface leads to striking six-fold photovoltage patterns as a function of bottom- and top-gate voltages. These patterns, together with the measured spatial and density dependence of the photoresponse, provide strong evidence that nonlocal hot carrier transport, rather than the photovoltaic effect, dominates the intrinsic photoresponse in graphene. This regime, which features a long-lived and spatially distributed hot carrier population, may offer a path to hot carrier–assisted thermoelectric technologies for efficient solar energy harvesting.

967 citations

Journal ArticleDOI
TL;DR: Various approaches for energy harvesting to meet the future demand for self-powered MNSs are covered.
Abstract: Health, infrastructure, and environmental monitoring as well as networking and defense technologies are only some of the potential areas of application of micro-/nanosystems (MNSs). It is highly desirable that these MNSs operate without an external electricity source and instead draw the energy they require from the environment in which they are used. This Review covers various approaches for energy harvesting to meet the future demand for self-powered MNSs.

907 citations