scispace - formally typeset
Search or ask a question
Author

Hua-Lu Pan

Bio: Hua-Lu Pan is an academic researcher from National Oceanic and Atmospheric Administration. The author has contributed to research in topics: Climate Forecast System & Global Forecast System. The author has an hindex of 15, co-authored 19 publications receiving 7340 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The NCEP Climate Forecast System Reanalysis (CFSR) was completed for the 31-yr period from 1979 to 2009, in January 2010 as mentioned in this paper, which was designed and executed as a global, high-resolution coupled atmosphere-ocean-land surface-sea ice system to provide the best estimate of the state of these coupled domains over this period.
Abstract: The NCEP Climate Forecast System Reanalysis (CFSR) was completed for the 31-yr period from 1979 to 2009, in January 2010. The CFSR was designed and executed as a global, high-resolution coupled atmosphere–ocean–land surface–sea ice system to provide the best estimate of the state of these coupled domains over this period. The current CFSR will be extended as an operational, real-time product into the future. New features of the CFSR include 1) coupling of the atmosphere and ocean during the generation of the 6-h guess field, 2) an interactive sea ice model, and 3) assimilation of satellite radiances by the Gridpoint Statistical Interpolation (GSI) scheme over the entire period. The CFSR global atmosphere resolution is ~38 km (T382) with 64 levels extending from the surface to 0.26 hPa. The global ocean's latitudinal spacing is 0.25° at the equator, extending to a global 0.5° beyond the tropics, with 40 levels to a depth of 4737 m. The global land surface model has four soil levels and the global sea ice m...

4,520 citations

Journal ArticleDOI
TL;DR: The Climate Forecast System (CFS) as discussed by the authors is a fully coupled ocean-land-atmosphere dynamical seasonal prediction system, which became operational at NCEP in August 2004.
Abstract: The Climate Forecast System (CFS), the fully coupled ocean–land–atmosphere dynamical seasonal prediction system, which became operational at NCEP in August 2004, is described and evaluated in this paper. The CFS provides important advances in operational seasonal prediction on a number of fronts. For the first time in the history of U.S. operational seasonal prediction, a dynamical modeling system has demonstrated a level of skill in forecasting U.S. surface temperature and precipitation that is comparable to the skill of the statistical methods used by the NCEP Climate Prediction Center (CPC). This represents a significant improvement over the previous dynamical modeling system used at NCEP. Furthermore, the skill provided by the CFS spatially and temporally complements the skill provided by the statistical tools. The availability of a dynamical modeling tool with demonstrated skill should result in overall improvement in the operational seasonal forecasts produced by CPC. The atmospheric compon...

1,220 citations

Journal ArticleDOI
TL;DR: In this article, the authors tested four land surface parameterization schemes against long-term (5 months) area-averaged observations over the 15 km × 15 km First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE) area.
Abstract: We tested four land surface parameterization schemes against long-term (5 months) area-averaged observations over the 15 km × 15 km First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE) area. This approach proved to be very beneficial to understanding the performance and limitations of different land surface models. These four surface models, embodying different complexities of the evaporation/hydrology treatment, included the traditional simple bucket model, the simple water balance (SWB) model, the Oregon State University (OSU) model, and the simplified Simple Biosphere (SSiB) model. The bucket model overestimated the evaporation during wet periods, and this resulted in unrealistically large negative sensible heat fluxes. The SWB model, despite its simple evaporation formulation, simulated well the evaporation during wet periods, but it tended to underestimate the evaporation during dry periods. Overall, the OSU model ably simulated the observed seasonal and diurnal variation in evaporation, soil moisture, sensible heat flux, and surface skin temperature. The more complex SSiB model performed similarly to the OSU model. A range of sensitivity experiments showed that some complexity in the canopy resistance scheme is important in reducing both the overestimation of evaporation during wet periods and underestimation during dry periods. Properly parameterizing not only the effect of soil moisture stress but also other canopy resistance factors, such as the vapor pressure deficit stress, is critical for canopy resistance evaluation. An overly simple canopy resistance that includes only soil moisture stress is unable to simulate observed surface evaporation during dry periods. Given a modestly comprehensive time-dependent canopy resistance treatment, a rather simple surface model such as the OSU model can provide good area-averaged surface heat fluxes for mesoscale atmospheric models.

1,043 citations

Journal ArticleDOI
TL;DR: A new physics package containing revised convection and planetary boundary layer (PBL) schemes in the National Centers for Environmental Prediction's Global Forecast System is described in this paper, where a remarkable difference between the new and old SC schemes is seen in the heating or cooling behavior in lower-atmospheric layers above the PBL.
Abstract: A new physics package containing revised convection and planetary boundary layer (PBL) schemes in the National Centers for Environmental Prediction’s Global Forecast System is described. The shallow convection (SC) scheme in the revision employs a mass flux parameterization replacing the old turbulent diffusion-based approach. For deep convection, the scheme is revised to make cumulus convection stronger and deeper to deplete more instability in the atmospheric column and result in the suppression of the excessive grid-scaleprecipitation. The PBL model was revised to enhance turbulence diffusion in stratocumulus regions. A remarkable difference between the new and old SC schemes is seen in the heating or cooling behavior in lower-atmospheric layers above the PBL. While the old SC scheme using the diffusion approach produces a pair of layers in the lower atmosphere with cooling above and heating below, the new SC scheme using the mass-flux approach produces heating throughout the convection layers. In particular, the new SC scheme does not destroy stratocumulus clouds off the west coasts of South America and Africa as the old scheme does. On the other hand, the revised deep convection scheme, having a larger cloud-base mass flux and higher cloud tops, appears to effectively eliminate the remaining instability in the atmospheric column that is responsible for the excessive grid-scale precipitation in the old scheme. The revised PBL scheme, having an enhanced turbulence mixing in stratocumulus regions, helps prevent too much low cloud from forming. An overall improvement was found in the forecasts of the global 500-hPa height, vector wind, and continental U.S. precipitation with the revised model. Consistent with the improvement in vector wind forecast errors, hurricane track forecasts are also improved with the revised model for both Atlantic and eastern Pacific hurricanes in 2008.

416 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: ERA-Interim as discussed by the authors is the latest global atmospheric reanalysis produced by the European Centre for Medium-Range Weather Forecasts (ECMWF), which will extend back to the early part of the twentieth century.
Abstract: ERA-Interim is the latest global atmospheric reanalysis produced by the European Centre for Medium-Range Weather Forecasts (ECMWF). The ERA-Interim project was conducted in part to prepare for a new atmospheric reanalysis to replace ERA-40, which will extend back to the early part of the twentieth century. This article describes the forecast model, data assimilation method, and input datasets used to produce ERA-Interim, and discusses the performance of the system. Special emphasis is placed on various difficulties encountered in the production of ERA-40, including the representation of the hydrological cycle, the quality of the stratospheric circulation, and the consistency in time of the reanalysed fields. We provide evidence for substantial improvements in each of these aspects. We also identify areas where further work is needed and describe opportunities and objectives for future reanalysis projects at ECMWF. Copyright © 2011 Royal Meteorological Society

22,055 citations

Journal ArticleDOI
TL;DR: In this article, a revised vertical diffusion algorithm with a nonlocal turbulent mixing coefficient in the planetary boundary layer (PBL) is proposed for weather forecasting and climate prediction models, which improves several features compared with the Hong and Pan implementation.
Abstract: This paper proposes a revised vertical diffusion package with a nonlocal turbulent mixing coefficient in the planetary boundary layer (PBL). Based on the study of Noh et al. and accumulated results of the behavior of the Hong and Pan algorithm, a revised vertical diffusion algorithm that is suitable for weather forecasting and climate prediction models is developed. The major ingredient of the revision is the inclusion of an explicit treatment of entrainment processes at the top of the PBL. The new diffusion package is called the Yonsei University PBL (YSU PBL). In a one-dimensional offline test framework, the revised scheme is found to improve several features compared with the Hong and Pan implementation. The YSU PBL increases boundary layer mixing in the thermally induced free convection regime and decreases it in the mechanically induced forced convection regime, which alleviates the well-known problems in the Medium-Range Forecast (MRF) PBL. Excessive mixing in the mixed layer in the presenc...

5,363 citations

Journal ArticleDOI
TL;DR: The Modern-Era Retrospective Analysis for Research and Applications (MERRA) was undertaken by NASA's Global Modeling and Assimilation Office with two primary objectives: to place observations from NASA's Earth Observing System satellites into a climate context and to improve upon the hydrologic cycle represented in earlier generations of reanalyses as mentioned in this paper.
Abstract: The Modern-Era Retrospective Analysis for Research and Applications (MERRA) was undertaken by NASA’s Global Modeling and Assimilation Office with two primary objectives: to place observations from NASA’s Earth Observing System satellites into a climate context and to improve upon the hydrologic cycle represented in earlier generations of reanalyses. Focusing on the satellite era, from 1979 to the present, MERRA has achieved its goals with significant improvements in precipitation and water vapor climatology. Here, a brief overview of the system and some aspects of its performance, including quality assessment diagnostics from innovation and residual statistics, is given.By comparing MERRA with other updated reanalyses [the interim version of the next ECMWF Re-Analysis (ERA-Interim) and the Climate Forecast System Reanalysis (CFSR)], advances made in this new generation of reanalyses, as well as remaining deficiencies, are identified. Although there is little difference between the new reanalyses i...

4,572 citations

Journal ArticleDOI
TL;DR: An overview of the MERRA-2 system and various performance metrics is provided, including the assimilation of aerosol observations, several improvements to the representation of the stratosphere including ozone, and improved representations of cryospheric processes.
Abstract: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), is the latest atmospheric reanalysis of the modern satellite era produced by NASA’s Global Modeling and Assimilation Office (GMAO). MERRA-2 assimilates observation types not available to its predecessor, MERRA, and includes updates to the Goddard Earth Observing System (GEOS) model and analysis scheme so as to provide a viable ongoing climate analysis beyond MERRA’s terminus. While addressing known limitations of MERRA, MERRA-2 is also intended to be a development milestone for a future integrated Earth system analysis (IESA) currently under development at GMAO. This paper provides an overview of the MERRA-2 system and various performance metrics. Among the advances in MERRA-2 relevant to IESA are the assimilation of aerosol observations, several improvements to the representation of the stratosphere including ozone, and improved representations of cryospheric processes. Other improvements in the quality of M...

4,524 citations

Journal ArticleDOI
TL;DR: The NCEP Climate Forecast System Reanalysis (CFSR) was completed for the 31-yr period from 1979 to 2009, in January 2010 as mentioned in this paper, which was designed and executed as a global, high-resolution coupled atmosphere-ocean-land surface-sea ice system to provide the best estimate of the state of these coupled domains over this period.
Abstract: The NCEP Climate Forecast System Reanalysis (CFSR) was completed for the 31-yr period from 1979 to 2009, in January 2010. The CFSR was designed and executed as a global, high-resolution coupled atmosphere–ocean–land surface–sea ice system to provide the best estimate of the state of these coupled domains over this period. The current CFSR will be extended as an operational, real-time product into the future. New features of the CFSR include 1) coupling of the atmosphere and ocean during the generation of the 6-h guess field, 2) an interactive sea ice model, and 3) assimilation of satellite radiances by the Gridpoint Statistical Interpolation (GSI) scheme over the entire period. The CFSR global atmosphere resolution is ~38 km (T382) with 64 levels extending from the surface to 0.26 hPa. The global ocean's latitudinal spacing is 0.25° at the equator, extending to a global 0.5° beyond the tropics, with 40 levels to a depth of 4737 m. The global land surface model has four soil levels and the global sea ice m...

4,520 citations