scispace - formally typeset
Search or ask a question
Author

Hua Zhang

Bio: Hua Zhang is an academic researcher from Nanchang University. The author has contributed to research in topics: Catalysis & Carbonylation. The author has an hindex of 20, co-authored 57 publications receiving 3907 citations. Previous affiliations of Hua Zhang include Nagoya University & Shenzhen University.
Topics: Catalysis, Carbonylation, Aryl, Borylation, Palladium


Papers
More filters
Journal ArticleDOI
Chao Liu1, Hua Zhang1, Wei Shi1, Aiwen Lei1, Aiwen Lei2 
TL;DR: Oxidative X-X Bond Formations between Two Nucleophiles 1819 5.1.
Abstract: 3.1. C-M and X-H as Nucleophiles 1806 3.2. C-H and X-M as Nucleophiles 1809 3.2.1. C-Halogen Bond Formations 1809 3.2.2. C-O Bond Formations 1812 3.3. C-H and X-H as Nucleophiles 1812 3.3.1. C-O Bond Formations 1812 3.3.2. C-N Bond Formations 1815 4. Oxidative X-X Bond Formations between Two Nucleophiles 1819 5. Conclusions 1819 Author Information 1819 Biographies 1819 Acknowledgment 1820 References 1820

1,564 citations

Journal ArticleDOI
TL;DR: A conceptually different approach toward the biaryl syntheses is uncovered by using DMEDA as the catalyst to promote the direct C-H arylation of unactivated benzene in the presence of potassium tert-butoxide.
Abstract: A striking breakthrough to the frame of traditional cross-couplings/C-H functionalizations using an organocatalyst remains unprecedented. We uncovered a conceptually different approach toward the biaryl syntheses by using DMEDA as the catalyst to promote the direct C-H arylation of unactivated benzene in the presence of potassium tert-butoxide. The arylation of unactivated benzene with aryl iodides, or aryl bromides and even chlorides under the assistance of an iodo-group, could simply take place at 80 °C. The new methodology presumably involves an aryl radical anion as an intermediate. This finding offers an option toward establishing a new horizon for direct C-H/cross-coupling reactions.

499 citations

Journal ArticleDOI
TL;DR: This Minireview summarizes this novel type of oxidative carbonylation reaction, where organometallic reagents and hydrocarbons were directly employed as nucleophiles to construct a C-C bond in oxidative Carbonylation reactions.
Abstract: Oxidative carbonylation reactions have attracted broad interest from both academia and industry in recent years. Enormous efforts have gone into the syntheses of carbonate and urea derivatives through the oxidative carbonylation of alcohols and amines. Very recently, organometallic reagents (RM) and hydrocarbons(RH) were directly employed as nucleophiles to construct a CC bond in oxidative carbonylation reactions. This Minireview summarizes this novel type of oxidative carbonylation reaction.

395 citations

Journal ArticleDOI
21 Aug 2015-Science
TL;DR: It is concluded that ShHTLs function as the strigolactone receptors mediating seed germination in Striga, the diverged family of α/β hydrolase-fold proteins inStriga.
Abstract: Elucidating the signaling mechanism of strigolactones has been the key to controlling the devastating problem caused by the parasitic plant Striga hermonthica. To overcome the genetic intractability that has previously interfered with identification of the strigolactone receptor, we developed a fluorescence turn-on probe, Yoshimulactone Green (YLG), which activates strigolactone signaling and illuminates signal perception by the strigolactone receptors. Here we describe how strigolactones bind to and act via ShHTLs, the diverged family of α/β hydrolase-fold proteins in Striga. Live imaging using YLGs revealed that a dynamic wavelike propagation of strigolactone perception wakes up Striga seeds. We conclude that ShHTLs function as the strigolactone receptors mediating seed germination in Striga. Our findings enable access to strigolactone receptors and observation of the regulatory dynamics for strigolactone signal transduction in Striga.

216 citations

Journal ArticleDOI
TL;DR: In this article, a Pd-Cu-Ag trimetallic system was developed to convert indoles to carbazoles using electron-deficient alkenes as two-carbon units.
Abstract: We have developed a Pd–Cu–Ag trimetallic system that can convert indoles to carbazoles using electron-deficient alkenes as two-carbon units. Investigation of the reaction mechanism revealed that this one-shot indole-to-carbazole π-extension is likely to proceed through the sequence of (i) Pd/Cu-catalyzed indole C–H alkenylation, (ii) Ag-promoted Diels–Alder reaction and dehydrogenative aromatization. The successful one-pot synthesis of a granulatimide derivative, an interesting class of Chk1 kinase inhibitor, highlights the potential of the present reaction for further development and applications.

129 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review summarizes the development and scope of carboxylates as cocatalysts in transition-metal-catalyzed C-H functionalizations until autumn 2010 and proposes new acronyms, such as CMD (concerted metalationdeprotonation), IES (internal electrophilic substitution), or AMLA (ambiphilic metal ligand activation), which describe related mechanisms.
Abstract: The site-selective formation of carbon-carbon bonds through direct functionalizations of otherwise unreactive carbon-hydrogen bonds constitutes an economically attractive strategy for an overall streamlining of sustainable syntheses. In recent decades, intensive research efforts have led to the development of various reaction conditions for challenging C-H bond functionalizations, among which transition-metal-catalyzed transformations arguably constitute thus far the most valuable tool. For instance, the use of inter alia palladium, ruthenium, rhodium, copper, or iron complexes set the stage for chemo-, site-, diastereo-, and/or enantioselective C-H bond functionalizations. Key to success was generally a detailed mechanistic understanding of the elementary C-H bond metalation step, which depending on the nature of the metal fragment can proceed via several distinct reaction pathways. Traditionally, three different modes of action were primarily considered for CH bond metalations, namely, (i) oxidative addition with electronrich late transition metals, (ii) σ-bond metathesis with early transition metals, and (iii) electrophilic activation with electrondeficient late transition metals (Scheme 1). However, more recent mechanistic studies indicated the existence of a continuum of electrophilic, ambiphilic, and nucleophilic interactions. Within this continuum, detailed experimental and computational analysis provided strong evidence for novel C-H bond metalationmechanisms relying on the assistance of a bifunctional ligand bearing an additional Lewis-basic heteroatom, such as that found in (heteroatom-substituted) secondary phosphine oxides or most prominently carboxylates (Scheme 1, iv). This novel insight into the nature of stoichiometric metalations has served as stimulus for the development of novel transformations based on cocatalytic amounts of carboxylates, which significantly broadened the scope of C-H bond functionalizations in recent years, with most remarkable progress being made in palladiumor ruthenium-catalyzed direct arylations and direct alkylations. These carboxylate-assisted C-H bond transformations were mostly proposed to proceed via a mechanism in which metalation takes place via a concerted base-assisted deprotonation. To mechanistically differentiate these intramolecular metalations new acronyms have recently been introduced into the literature, such as CMD (concerted metalationdeprotonation), IES (internal electrophilic substitution), or AMLA (ambiphilic metal ligand activation), which describe related mechanisms and will be used below where appropriate. This review summarizes the development and scope of carboxylates as cocatalysts in transition-metal-catalyzed C-H functionalizations until autumn 2010. Moreover, experimental and computational studies on stoichiometric metalation reactions being of relevance to the mechanism of these catalytic processes are discussed as well. Mechanistically related C-H bond cleavage reactions with ruthenium or iridium complexes bearing monodentate ligands are, however, only covered with respect to their working mode, and transformations with stoichiometric amounts of simple acetate bases are solely included when their mechanism was suggested to proceed by acetate-assisted metalation.

2,820 citations

Journal ArticleDOI
TL;DR: This Review provides an overview of C-H bond functionalization strategies for the rapid synthesis of biologically active compounds such as natural products and pharmaceutical targets.
Abstract: The direct functionalization of C-H bonds in organic compounds has recently emerged as a powerful and ideal method for the formation of carbon-carbon and carbon-heteroatom bonds. This Review provides an overview of C-H bond functionalization strategies for the rapid synthesis of biologically active compounds such as natural products and pharmaceutical targets.

2,391 citations

Journal ArticleDOI
TL;DR: This critical review covers the recent progresses on the regioselective dehydrogenative direct coupling reaction of heteroarenes, including arylation, olefination, alkynylation, and amination/amidation mainly utilizing transition metal catalysts.
Abstract: The direct functionalization of heterocyclic compounds has emerged as one of the most important topics in the field of metal-catalyzed C–H bond activation due to the fact that products are an important synthetic motif in organic synthesis, the pharmaceutical industry, and materials science. This critical review covers the recent progresses on the regioselective dehydrogenative direct coupling reaction of heteroarenes, including arylation, olefination, alkynylation, and amination/amidation mainly utilizing transition metal catalysts (113 references).

2,062 citations

Journal ArticleDOI
TL;DR: The facile construction of C-E (E = C, N, S, or O) bonds makes Rh(III) catalysis an attractive step-economic approach to value-added molecules from readily available starting materials.
Abstract: Rhodium(III)-catalyzed direct functionalization of C-H bonds under oxidative conditions leading to C-C, C-N, and C-O bond formation is reviewed. Various arene substrates bearing nitrogen and oxygen directing groups are covered in their coupling with unsaturated partners such as alkenes and alkynes. The facile construction of C-E (E = C, N, S, or O) bonds makes Rh(III) catalysis an attractive step-economic approach to value-added molecules from readily available starting materials. Comparisons and contrasts between rhodium(III) and palladium(II)-catalyzed oxidative coupling are made. The remarkable diversity of structures accessible is demonstrated with various recent examples, with a proposed mechanism for each transformation being briefly summarized (critical review, 138 references).

1,899 citations

Journal ArticleDOI
TL;DR: A critical appraisal of different synthetic approaches to Cu and Cu-based nanoparticles and copper nanoparticles immobilized into or supported on various support materials (SiO2, magnetic support materials, etc.), along with their applications in catalysis.
Abstract: The applications of copper (Cu) and Cu-based nanoparticles, which are based on the earth-abundant and inexpensive copper metal, have generated a great deal of interest in recent years, especially in the field of catalysis. The possible modification of the chemical and physical properties of these nanoparticles using different synthetic strategies and conditions and/or via postsynthetic chemical treatments has been largely responsible for the rapid growth of interest in these nanomaterials and their applications in catalysis. In addition, the design and development of novel support and/or multimetallic systems (e.g., alloys, etc.) has also made significant contributions to the field. In this comprehensive review, we report different synthetic approaches to Cu and Cu-based nanoparticles (metallic copper, copper oxides, and hybrid copper nanostructures) and copper nanoparticles immobilized into or supported on various support materials (SiO2, magnetic support materials, etc.), along with their applications i...

1,823 citations