scispace - formally typeset
Search or ask a question
Author

Hua Zhang

Bio: Hua Zhang is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Medicine & Graphene. The author has an hindex of 163, co-authored 1503 publications receiving 116769 citations. Previous affiliations of Hua Zhang include Shenzhen University & Zhengzhou University.


Papers
More filters
Journal ArticleDOI
TL;DR: This method could be generalized to prepare other 2D nanostructures with great potential for various attractive applications and exhibited excellent absorption capability to remove Rhodamine B in wastewater owing to their large specific surface area, good hydrophilic property, and more negative zeta potential.
Abstract: Ultrathin 2D nanostructures have shown many unique properties and are attractive for various potential applications. Here, we demonstrated a strategy to synthesize ultrathin VOx nanosheets. The as-obtained ultrathin VOx nanosheets showed a large Brunauer–Emmett–Teller (BET) surface area of 136.3 m2g–1, which is much larger than that of 1D multilayer VOx nanotubes. As a proof of concept, these hydrophilic ultrathin nanosheets were applied in water treatment and exhibited excellent absorption capability to remove Rhodamine B (RhB) in wastewater owing to their large specific surface area, good hydrophilic property, and more negative zeta potential. In addition, this method could be generalized to prepare other 2D nanostructures with great potential for various attractive applications.

16 citations

Journal ArticleDOI
TL;DR: In IVF cycles with GnRH-antagonist protocol, economic benefits were seen in non-overweight patients with PCOS, with less Gn cost and more retrieved oocytes, and the predictive value of basal AND on miscarriage was slightly stronger than BMI.
Abstract: There is limited literature investigating the effects of body mass index (BMI) and androgen level on in vitro fertilization (IVF) outcomes with a gonadotropin-releasing hormone (GnRH)-antagonist protocol in polycystic ovary syndrome (PCOS). Androgen-related variation in the effect of body mass index (BMI) on IVF outcomes remains unknown. In this retrospective study, 583 infertile women with PCOS who underwent IVF using the conventional GnRH-antagonist protocol were included. Patients were divided into four groups according to BMI and androgen level: overweight- hyperandrogenism(HA) group, n = 96, overweight-non-HA group, n = 117, non-overweight-HA group, n = 152, and non-overweight-non-HA group, n = 218. A significantly higher number of oocytes were retrieved, and the total Gn consumption as well Gn consumption per day was significantly lower, in the non-overweight groups than in the overweight groups. The number of available embryos was significantly higher in the HA groups than in the non-HA groups. Clinical pregnancy rate was of no significant difference among four groups. Live-birth rates in the overweight groups were significantly lower than those in non-overweight-non-HA group (23.9, 28.4% vs. 42.5%, P<0.05). The miscarriage rate in overweight-HA group was significantly higher than that in non-overweight-non-HA group (45.2% vs. 14.5%, P<0.05). Multivariate logistic regression analysis revealed that BMI and basal androstenedione (AND) both acted as significantly influent factors on miscarriage rate. The area under the curve (AUC) in receiver operating characteristic (ROC) analysis for BMI and basal AND on miscarriage rate were 0.607 (P = 0.029) and 0.657 (P = 0.001), respectively, and the cut-off values of BMI and basal AND were 25.335 kg/m2 and 10.95 nmol/L, respectively. In IVF cycles with GnRH-antagonist protocol, economic benefits were seen in non-overweight patients with PCOS, with less Gn cost and more retrieved oocytes. BMI and basal AND were both significantly influential factors with moderate predictive ability on the miscarriage rate. The predictive value of basal AND on miscarriage was slightly stronger than BMI.

16 citations

Journal ArticleDOI
TL;DR: In this paper, the linear sweep voltammetry was used to convert Pt wires to concave icosahedra and nanocubes on carbon paper through linear sweep voltageammetry in a classic three-electrode electrochemical cell.
Abstract: In the controlled synthesis of noble metal nanostructures using wet-chemical methods, normally, metal salts/complexes are used as precursors, and surfactants/ ligands are used to tune/stabilize the morphology of nano-structures. Here, we develop a facile electrochemical method to directly convert Pt wires to Pt concave icosahedra and nanocubes on carbon paper through the linear sweep voltammetry in a classic three-electrode electrochemical cell. The Pt wire, carbon paper and Ag/AgCl (3 mol L−1 KCl) are used as the counter, working and reference electrodes, respectively. Impressively, the formed Pt nanostructures exhibit better electrocatalytic activity towards the hydrogen evolution compared to the commercial Pt/C catalyst. This work provides a simple and effective way for direct conversion of Pt wires into well-defined Pt nanocrystals with clean surface. We believe it can also be used for preparation of other metal nanocrystals, such as Au and Pd, from their bulk materials, which could exhibit various promising applications.

16 citations

Journal ArticleDOI
21 Apr 2000-Langmuir
TL;DR: In this paper, the displacement adsorption process of 4-mercaptopyridine (4-MP) on trisodium citrate preadsorbed gold surface in aqueous solution was studied using atomic force microscopy (AFM).
Abstract: The displacement adsorption process of 4-mercaptopyridine (4-MP) on trisodium citrate preadsorbed gold surface in aqueous solution was studied using atomic force microscopy (AFM). The measurement was done by monitoring the interaction force between a gold-coated AFM tip and a gold substrate, both presaturated by trisodium citrate. The addition of 4-MP was found to result in a remarkable change of tip−substrate adhesion force, which showed a gradual increase and finally reached a maximum. Using the chemical force titration technique, we estimated the surface pK1/2 of thus-formed 4-MP displacement film and compared with pure 4-MP self-assembled monolayer (SAM) formed on gold in ethanol solution. Our results indicate that the 4-MP molecules are more strongly adsorbed on gold than citrate anions, mostly via Au−S bonding, forming a less dense and mixed displacement film. The displacement adsorption kinetics seems very fast and it takes only ca. 2 min to establish more than 50% surface coverage of 4-MP molecules.

16 citations

Journal ArticleDOI
TL;DR: In this article, ZnO/TiO2 bilayered electron transport layers (ETLs) have been used as ETLs for perovskite solar cells, which can not only enhance photovoltaic performance but also improve device stability.
Abstract: The instability of perovskite films is a major issue for perovskite solar cells based on ZnO electron transport layers (ETLs). Here, ZnO nanoparticle (NP)- and ZnO sol–gel layers capped with low-temperature processed TiO2, namely ZnO/TiO2 bilayered films, have been successfully employed as ETLs in highly efficient MAPbI3-based perovskite solar cells. It is demonstrated that these ZnO/TiO2 bilayered ETLs are not only capable of enhancing photovoltaic performance, but also capable of improving device stability. The best device based on the ZnO/TiO2 bilayered ETL exhibits an efficiency of ∼15% under standard test conditions and can retain nearly 100% of its initial efficiency after 30 days of atmosphere storage, showing much higher device performance and stability compared to those devices based on ZnO single-layer ETLs. Moreover, it is found that perovskite films and devices prepared on the single ZnO sol–gel ETLs are much superior to those deposited on the single ZnO NP-ETLs in both stability and performance, which can be ascribed to fewer surface hydroxyl groups and much smoother surface morphology of the ZnO sol–gel films. The results pave the way for ZnO to be used as an effective ETL of low-temperature processed, efficient and stable PSCs compatible with flexible substrates.

16 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This work reviews the historical development of Transition metal dichalcogenides, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.
Abstract: Single-layer metal dichalcogenides are two-dimensional semiconductors that present strong potential for electronic and sensing applications complementary to that of graphene.

13,348 citations