scispace - formally typeset
Search or ask a question
Author

Hua Zhang

Bio: Hua Zhang is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Medicine & Graphene. The author has an hindex of 163, co-authored 1503 publications receiving 116769 citations. Previous affiliations of Hua Zhang include Shenzhen University & Zhengzhou University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the preparation of single-layer TiS2 and TaS2 nanosheets is realized by optimizing the electrochemical lithium interaction and exfoliation method.
Abstract: The preparation of single-layer TiS2 and TaS2 nanosheets is realized by optimizing the electrochemical lithium interaction and exfoliation method. As a proof of concept, Pt and Au nanoparticles are grown on the aforementioned ultra-thin nanosheets to form functional composites. Notably, the Pt–TiS2 hybrid presents good electrocatalytic activity in the hydrogen evolution reaction.

310 citations

Journal ArticleDOI
TL;DR: This work provides a universal and effective way toward the synthesis of TMD nanostructures with abundant active sites for electrocatalysis, which can also be used for other applications such as batteries, sensors, and bioimaging.
Abstract: Nanostructured transition metal dichalcogenides (TMDs) are proven to be efficient and robust earth-abundant electrocatalysts to potentially replace precious platinum-based catalysts for the hydrogen evolution reaction (HER). However, the catalytic efficiency of reported TMD catalysts is still limited by their low-density active sites, low conductivity, and/or uncleaned surface. Herein, a general and facile method is reported for high-yield, large-scale production of water-dispersed, ultrasmall-sized, high-percentage 1T-phase, single-layer TMD nanodots with high-density active edge sites and clean surface, including MoS2 , WS2 , MoSe2 , Mo0.5 W0.5 S2 , and MoSSe, which exhibit much enhanced electrochemical HER performances as compared to their corresponding nanosheets. Impressively, the obtained MoSSe nanodots achieve a low overpotential of -140 mV at current density of 10 mA cm-2 , a Tafel slope of 40 mV dec-1 , and excellent long-term durability. The experimental and theoretical results suggest that the excellent catalytic activity of MoSSe nanodots is attributed to the high-density active edge sites, high-percentage metallic 1T phase, alloying effect and basal-plane Se-vacancy. This work provides a universal and effective way toward the synthesis of TMD nanostructures with abundant active sites for electrocatalysis, which can also be used for other applications such as batteries, sensors, and bioimaging.

310 citations

Journal ArticleDOI
Hai Li1, Gang Lu1, Zongyou Yin1, Qiyuan He1, Hong Li1, Qing Zhang1, Hua Zhang1 
12 Mar 2012-Small
TL;DR: Using an optical imaging method combined with image analysis software, a high-contrast image of the MoS₂ sheets can be extracted from the red (R) channel of the color optical microscopy image.
Abstract: A simple approach is developed to identify the layer number of 2D MoS₂ sheets. By using an optical imaging method combined with image analysis software, a high-contrast image of the MoS₂ sheets can be extracted from the red (R) channel of the color optical microscopy image. The value of the intensity difference in the grayscale image of the R channel between MoS₂ sheets (1-3 layers) and the SiO₂ substrate can be used to identify the layer number of the sheet.

307 citations

Journal ArticleDOI
TL;DR: A systematic study of spinel ZnFex Co2-x O4 oxides toward the OER is presented and a highly active catalyst superior to benchmark IrO2 is developed and the distinctive OER activity is found to be dominated by the metal-oxygen covalency and an enlarged CoO covalencies by 10-30 at% Fe substitution is responsible for the activity enhancement.
Abstract: Cobalt-containing spinel oxides are promising electrocatalysts for the oxygen evolution reaction (OER) owing to their remarkable activity and durability. However, the activity still needs further improvement and related fundamentals remain untouched. The fact that spinel oxides tend to form cation deficiencies can differentiate their electrocatalysis from other oxide materials, for example, the most studied oxygen-deficient perovskites. Here, a systematic study of spinel ZnFex Co2-x O4 oxides (x = 0-2.0) toward the OER is presented and a highly active catalyst superior to benchmark IrO2 is developed. The distinctive OER activity is found to be dominated by the metal-oxygen covalency and an enlarged CoO covalency by 10-30 at% Fe substitution is responsible for the activity enhancement. While the pH-dependent OER activity of ZnFe0.4 Co1.6 O4 (the optimal one) indicates decoupled proton-electron transfers during the OER, the involvement of lattice oxygen is not considered as a favorable route because of the downshifted O p-band center relative to Fermi level governed by the spinel's cation deficient nature.

306 citations

Journal ArticleDOI
16 Feb 2010-Langmuir
TL;DR: It was found that rGO is biocompatible with all these cell types, whereas the SWCNT network is inhibitory to the proliferation, viability, and neuritegenesis of PC12 cells, and the proliferation of osteoblasts.
Abstract: Nanocarbon materials, including single-walled carbon nanotubes (SWCNTs) and graphene, promise various novel biomedical applications (e.g., nanoelectronic biosensing). In this Letter, we study the ability of SWCNT networks and reduced graphene oxide (rGO) films in interfacing several types of cells, such as neuroendocrine PC12 cells, oligodendroglia cells, and osteoblasts. It was found that rGO is biocompatible with all these cell types, whereas the SWCNT network is inhibitory to the proliferation, viability, and neuritegenesis of PC12 cells, and the proliferation of osteoblasts. These observations could be attributed to the distinct nanotopographic features of these two kinds of nanocarbon substrates.

303 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This work reviews the historical development of Transition metal dichalcogenides, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.
Abstract: Single-layer metal dichalcogenides are two-dimensional semiconductors that present strong potential for electronic and sensing applications complementary to that of graphene.

13,348 citations