scispace - formally typeset
Search or ask a question
Author

Hua Zhang

Bio: Hua Zhang is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Medicine & Graphene. The author has an hindex of 163, co-authored 1503 publications receiving 116769 citations. Previous affiliations of Hua Zhang include Shenzhen University & Zhengzhou University.


Papers
More filters
Journal ArticleDOI
TL;DR: In infants born to hepatitis B surface antigen (HBsAg)–positive mothers, failure after passive–active immunization still occurs and the role of maternal hepatitis B DNA level and other risk factors in this setting remains unclear.
Abstract: In infants born to hepatitis B surface antigen (HBsAg)-positive mothers, failure after passive-active immunization still occurs. The role of maternal hepatitis B DNA level and other risk factors in this setting remains unclear. This study retrospectively evaluated virologic and other risk factors associated with immunoprophylaxis failure in infants born to HBsAg-positive mothers. Between January 2007 and March 2010, we reviewed the clinical and virologic tests in 869 mother-infant pairs. All infants received the identical passive-active immunization schedule after birth. The failure infants (HBsAg positive at 7-12 months of age) were compared to infants who were HBsAg negative when tested during this time period. Among 869 infants, 27 (3.1%) infants were immunoprophylaxis failures and the other 842 (96.9%) infants remained HBsAg negative. When mothers' pre-delivery HBV DNA levels were stratified to <6, 6-6.99, 7-7.99 and ≥ 8 log(10) copies/mL, the corresponding rates of immunoprophylaxis failure were 0%, 3.2% (3/95), 6.7% (19/282) and 7.6% (5/66), respectively (P < 0.001 for the trend). All failure infants were born to hepatitis B e antigen (HBeAg)-positive mothers. Multivariate logistic regression analysis identified maternal HBV DNA levels [odds ratio (OR) = 1.88, 95% confidence interval (CI): 1.07-3.30] and detectable HBV DNA in the cord blood (OR = 39.67, 95% CI: 14.22-110.64) as independent risk factors for immunoprophylaxis failure. All failure infants were born to HBeAg-positive mothers with HBV DNA levels ≥ 6 log(10) copies/mL. The presence of HBV DNA in cord blood predicted failure to passive-active immunization.

303 citations

Journal ArticleDOI
TL;DR: In this paper, the synthesis of ultrathin S-doped MoSe2 nanosheets demonstrating enhanced HER catalysis with a low onset overpotential of 90 mV and a Tafel slope of 58 mV per decade.
Abstract: We report the synthesis of ultrathin S-doped MoSe2 nanosheets demonstrating enhanced HER catalysis with a low onset overpotential of 90 mV and a Tafel slope of 58 mV per decade. We attribute the improved catalytic effects to the proliferation of unsaturated HER active sites in MoSe2 resulting from S-doping.

302 citations

Journal ArticleDOI
TL;DR: In this paper, an atomic layer deposition (ALD) and sacrificial template-assisted hydrolysis were used to construct a hierarchical hollow TiO2@Fe2O3 nanostructures for the application of lithium ion battery.
Abstract: Hollow and hierarchical nanostructures have received wide attention in new-generation, high-performance, lithium ion battery (LIB) applications. Both TiO2 and Fe2O3 are under current investigation because of their high structural stability (TiO2) and high capacity (Fe2O3), and their low cost. Here, we demonstrate a simple strategy for the fabrication of hierarchical hollow TiO2@Fe2O3 nanostructures for the application as LIB anodes. Using atomic layer deposition (ALD) and sacrificial template-assisted hydrolysis, the resulting nanostructure combines a large surface area with a hollow interior and robust structure. As a result, such rationally designed LIB anodes exhibit a high reversible capacity (initial value 840 mAh g−1), improved cycle stability (530 mAh g−1 after 200 cycles at the current density of 200 mA g−1), as well as outstanding rate capability. This ALD-assisted fabrication strategy can be extended to other hierarchical hollow metal oxide nanostructures for favorable applications in electrochemical and optoelectronic devices.

301 citations

Journal ArticleDOI
TL;DR: A facile, one-pot solvothermal method is developed to synthesize MoS2 nanoflowers coated on reduced graphene oxide (rGO) paper, which serves as a freestanding, flexible and durable working electrode for hydrogen evolution reaction (HER).
Abstract: A facile, one-pot solvothermal method is developed to synthesize MoS2 nanoflowers (MoS2NFs) coated on reduced graphene oxide (rGO) paper. The resulting MoS2NF/rGO paper serves as a freestanding, flexible and durable working electrode for hydrogen evolution reaction (HER), exhibiting an overpotential lowered to −0.19 V with a Tafel slope of ∼95 mV per decade.

300 citations

Journal ArticleDOI
TL;DR: In this paper, a new phototransistor based on the mechanically-exfoliated single-layer MoS2 nanosheet is fabricated and its light-induced electric properties are investigated in details.
Abstract: A new phototransistor based on the mechanically-exfoliated single-layer MoS2 nanosheet is fabricated and its light-induced electric properties are investigated in details. Photocurrent generated from the phototransistor is solely determined by the illuminated optical power at a constant drain or gate voltage. The switching behavior of photocurrent generation and annihilation can be completely finished within ca. 50 ms and it shows good stability. Especially, the single-layer MoS2 phototransistor exhibits a better photoresponsivity as compared with the graphene-based device. The unique characteristics of incident-light control, prompt photoswitching and good photoresponsivity from the MoS2 phototransistor pave an avenue to develop the single-layer semiconducting materials for multi-functional optoelectronic device applications in future.

299 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This work reviews the historical development of Transition metal dichalcogenides, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.
Abstract: Single-layer metal dichalcogenides are two-dimensional semiconductors that present strong potential for electronic and sensing applications complementary to that of graphene.

13,348 citations