scispace - formally typeset
Search or ask a question
Author

Hua Zhang

Bio: Hua Zhang is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Medicine & Graphene. The author has an hindex of 163, co-authored 1503 publications receiving 116769 citations. Previous affiliations of Hua Zhang include Shenzhen University & Zhengzhou University.


Papers
More filters
Journal ArticleDOI
TL;DR: It is proposed that VLN5 is a major regulator of actin filament stability and turnover that functions in concert with oscillatory calcium gradients in pollen and therefore plays an integral role in pollen germination and tube growth.
Abstract: A dynamic actin cytoskeleton is essential for pollen germination and tube growth. However, the molecular mechanisms underlying the organization and turnover of the actin cytoskeleton in pollen remain poorly understood. Villin plays a key role in the formation of higher-order structures from actin filaments and in the regulation of actin dynamics in eukaryotic cells. It belongs to the villin/gelsolin/fragmin superfamily of actin binding proteins and is composed of six gelsolin-homology domains at its core and a villin headpiece domain at its C terminus. Recently, several villin family members from plants have been shown to sever, cap, and bundle actin filaments in vitro. Here, we characterized a villin isovariant, Arabidopsis thaliana VILLIN5 (VLN5), that is highly and preferentially expressed in pollen. VLN5 loss-of-function retarded pollen tube growth and sensitized actin filaments in pollen grains and tubes to latrunculin B. In vitro biochemical analyses revealed that VLN5 is a typical member of the villin family and retains a full suite of activities, including barbed-end capping, filament bundling, and calcium-dependent severing. The severing activity was confirmed with time-lapse evanescent wave microscopy of individual actin filaments in vitro. We propose that VLN5 is a major regulator of actin filament stability and turnover that functions in concert with oscillatory calcium gradients in pollen and therefore plays an integral role in pollen germination and tube growth.

142 citations

Journal ArticleDOI
TL;DR: In this article, a three-step all-solution synthesis strategy (chemical bath deposition, electrodeposition, and hydrothermal) was used to synthesize Ni microtube/CNSs arrays.
Abstract: The high performance of electrochemical energy-storage devices relies largely on scrupulous design of nanoarchitectures and smart hybridization of bespoke active materials. Carbon nanopsheres (CNSs) are widely used for energy storage and conversion devices. Here, the directional assembly of CNSs on a vertical-standing metal scaffold into a core/shell array structure is reported. The method uses a three-step all-solution synthesis strategy (chemical bath deposition, electrodeposition, and hydrothermal) and begins from ZnO microrod arrays as a sacrificial template. The self-assembly of CNSs can be correlated to a simultaneous etching effect to the ZnO accompanying the polymerization of glucose precursor. The Ni microtube/CNSs arrays are selected as an example for structural and electrochemical characterizations. The novel type of metal/CNSs arrays is demonstrated to be a highly stable electrode for supercapacitors. The electrodes of metal/CNSs arrays are assembled into symmetric supercapacitors and exhibit high capacitances of 227 F g−1 (at 2.5 A g−1) and an outstanding cycling stability with capacitance retention of 97% after 40 000 cycles.

141 citations

Journal ArticleDOI
TL;DR: A water-soluble neutral fluorescent conjugated oligomer is integrated with graphene oxide to form a hybrid nanoprobe with extremely low fluorescence background due to the robust quenching capability of GO.
Abstract: A water-soluble neutral fluorescent conjugated oligomer (FBT) is integrated with graphene oxide (GO) to form a hybrid nanoprobe with extremely low fluorescence background due to the robust quenching capability of GO. The contact between GO and FBT can be effectively shielded by Concanavalin A because of the strong specific protein-carbohydrate interaction, which ultimately allows light-up visual detection of lectin and Escherichia coli.

141 citations

Journal ArticleDOI
10 Sep 2020-Chem
TL;DR: In this article, the authors employed alkali molten salts as catalysts to achieve facile and large-scale (over decagram) synthesis of a family of 2D layered transition-metal nitrides (TMNs), such as MoN1.7W0.3N 1.5, and Mo0.2, under atmospheric pressure.

139 citations

Journal ArticleDOI
TL;DR: The novel solvothermal process developed for the synthesis of carbon-coated Co9S8 nanodandelions using 1-dodecanethiol as the sulfur source and the soft template is attractive for the preparation of sulfide anode materials with high Li storage properties.
Abstract: A novel solvothermal process was developed for the synthesis of carbon-coated Co9S8 nanodandelions using 1-dodecanethiol as the sulfur source and the soft template. Replacing 1-dodecanethiol with sulfur powder as the sulfur source leads to the formation of 20 nm Co9S8 nanoparticles without carbon coating. When tested as LIB anode, the C@Co9S8 dandelion delivers a specific capacity of 520 mA h g–1 at a current density of 1 A g–1 (1.8 C) during the 50th cycle, which is much higher than that of Co9S8 nanoparticles (e.g. 338 mA h g–1). Furthermore, the C@Co9S8 dandelion also exhibits excellent high C-rate performance, e.g., depicts a 10th-cycle capacity of 373 mA h g–1 at a current density of 6 A g–1 (10.9 C), which is better than that of many reported anode materials. Such synthesis approach is attractive for the preparation of sulfide anode materials with high Li storage properties.

138 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This work reviews the historical development of Transition metal dichalcogenides, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.
Abstract: Single-layer metal dichalcogenides are two-dimensional semiconductors that present strong potential for electronic and sensing applications complementary to that of graphene.

13,348 citations