scispace - formally typeset
Search or ask a question
Author

Hua Zhang

Bio: Hua Zhang is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Medicine & Graphene. The author has an hindex of 163, co-authored 1503 publications receiving 116769 citations. Previous affiliations of Hua Zhang include Shenzhen University & Zhengzhou University.


Papers
More filters
Journal ArticleDOI
31 Oct 2017-ACS Nano
TL;DR: The results suggest that the interfacial layer-breathing couplings in the vdWHs formed by MoS2 and graphene flakes are not sensitive to their stacking order and twist angle between the two constituents, and demonstrate that the interlayer coupling in two-dimensional semimetals and semiconductors can lead to new lattice vibration modes.
Abstract: Interfacial coupling between neighboring layers of van der Waals heterostructures (vdWHs), formed by vertically stacking more than two types of two-dimensional materials (2DMs), greatly affects their physical properties and device performance. Although high-resolution cross-sectional scanning tunneling electron microscopy can directly image the atomically sharp interfaces in the vdWHs, the interfacial coupling and lattice dynamics of vdWHs formed by two different types of 2DMs, such as semimetal and semiconductor, are not clear so far. Here, we report the ultralow-frequency Raman spectroscopy investigation on interfacial couplings in the vdWHs formed by graphene and MoS2 flakes. Because of the significant interfacial layer-breathing couplings between MoS2 and graphene flakes, a series of layer-breathing modes with frequencies dependent on their layer numbers are observed in the vdWHs, which can be described by the linear chain model. It is found that the interfacial layer-breathing force constant between ...

93 citations

Journal ArticleDOI
Zhong-Wu Li1, Guangming Zeng1, Hua Zhang1, Bin Yang1, Sheng Jiao1 
TL;DR: In this paper, the authors established the environmental information system database for red soil hilly region, and evaluated the eco-environment quality in a typical area of this region, namely Changsha City, and integrated Delphi, AHP and Integrated Eco-environment Assessment Index Method into the ecoenvironmental quality assessment in the study area.

92 citations

Journal ArticleDOI
TL;DR: The data suggest that villins promote actin turnover at pollen tube tips and facilitate the construction of actin collars and that villin confers rigidity upon actin filaments.
Abstract: Apical actin filaments are crucial for pollen tube tip growth. However, the specific dynamic changes and regulatory mechanisms associated with actin filaments in the apical region remain largely unknown. Here, we have investigated the quantitative dynamic parameters that underlie actin filament growth and disappearance in the apical regions of pollen tubes and identified villin as the major player that drives rapid turnover of actin filaments in this region. Downregulation of Arabidopsis thaliana VILLIN2 (VLN2) and VLN5 led to accumulation of actin filaments at the pollen tube apex. Careful analysis of single filament dynamics showed that the severing frequency significantly decreased, and the lifetime significantly increased in vln2 vln5 pollen tubes. These results indicate that villin-mediated severing is critical for turnover and departure of actin filaments originating in the apical region. Consequently, the construction of actin collars was affected in vln2 vln5 pollen tubes. In addition to the decrease in severing frequency, actin filaments also became wavy and buckled in the apical cytoplasm of vln2 vln5 pollen tubes. These results suggest that villin confers rigidity upon actin filaments. Furthermore, an observed decrease in skewness of actin filaments in the subapical region of vln2 vln5 pollen tubes suggests that villin-mediated bundling activity may also play a role in the construction of actin collars. Thus, our data suggest that villins promote actin turnover at pollen tube tips and facilitate the construction of actin collars.

91 citations

Journal ArticleDOI
TL;DR: A general method for the synthesis of doped and undoped GQDs, which relies on direct carbonization of organic precursors in the solid state.
Abstract: Graphene quantum dots (GQDs) have attracted increasing interest because of their excellent properties such as strong photoluminescence, excellent biocompatibility and low cost. Herein, we develop a general method for the synthesis of doped and undoped GQDs, which relies on direct carbonization of organic precursors in the solid state.

91 citations

Journal ArticleDOI
09 May 2011-Small
TL;DR: The as-synthesized semiconducting Ag-TCNQ nanowires show good performance in nonvolatile memory devices with multiple write-read-erase-read (WRER) cycles in air.
Abstract: The chemical reaction between Ag nanoparticles (Ag NPs) and 7,7′,8,8′- tetracycanoquinodimethane (TCNQ) microparticles (MPs) in aqueous solution for the formation of Ag-NP-decorated Ag–TCNQ nanowires is reported. Based on the results obtained by UV–vis spectroscopy and scanning electron microscopy (SEM), it is proposed that the reaction between Ag NPs and TCNQ MPs includes three stages, namely, aggregation of NPs and MPs, diffusion and reaction between NPs and MPs, and formation of Ag–TCNQ nanowires. The as-synthesized semiconducting Ag–TCNQ nanowires show good performance in nonvolatile memory devices with multiple write-read-erase-read (WRER) cycles in air.

91 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This work reviews the historical development of Transition metal dichalcogenides, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.
Abstract: Single-layer metal dichalcogenides are two-dimensional semiconductors that present strong potential for electronic and sensing applications complementary to that of graphene.

13,348 citations