scispace - formally typeset
Search or ask a question
Author

Hua Zhang

Bio: Hua Zhang is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Medicine & Graphene. The author has an hindex of 163, co-authored 1503 publications receiving 116769 citations. Previous affiliations of Hua Zhang include Shenzhen University & Zhengzhou University.


Papers
More filters
Journal ArticleDOI
TL;DR: The ability to tune the composition and crystal structures of 2D materials via a facile one-pot solution process may provide more opportunities to control their functional properties and thus widens their range of practical applications.
Abstract: The facile tuning of the composition and structures of two-dimensional (2D) transition metal dichalcogenide (TMD) nanosheets is essential for improving their performance in various applications, but remains difficult to realize via a direct solution process. Here, we report the one-step liquid-phase preparation of alloyed Mo1−χWχS2 nanosheets with tunable 1T/2H phase ratios. These alloyed nanosheets showed composition- and phase-dependent electrochemical and electronic properties. By tuning the Mo/W ratio, an optimized combination of high-density active sites for the hydrogen evolution reaction (HER) and low charge transfer resistance can be achieved. Additionally, due to the formation of 1T/2H (metal/semiconductor) heterojunctions, the alloyed TMD nanosheets with an optimized 1T concentration exhibited much enhanced gas sensing capability compared to the highly metallic nanosheets or the annealed semiconducting nanosheets with the same chemical composition. Our findings suggest that the ability to tune the composition and crystal structures of 2D materials via a facile one-pot solution process may provide more opportunities to control their functional properties and thus widens their range of practical applications.

62 citations

Journal ArticleDOI
TL;DR: In this paper, a rational integration of metal tube (NiT), carbon spheres (CSs) and atomic layer deposited Fe 3 O 4 was used to construct high-performance oxygen reduction reaction (ORR) catalysts.

61 citations

Journal ArticleDOI
TL;DR: This work demonstrates the use of polymer shells as adjustable masks for nanosynthesis, where the different modes of shell transformation allow unconventional designs beyond facet control, allowing versatile and multi-step functionalization of colloidal particles at selective locations.
Abstract: Synthetic skills are the prerequisite and foundation for the modern chemical and pharmaceutical industry. The same is true for nanotechnology, whose development has been hindered by the sluggish advance of its synthetic toolbox, i.e., the emerging field of nanosynthesis. Unlike organic chemistry, where the variety of functional groups provides numerous handles for designing chemical selectivity, colloidal particles have only facets and ligands. Such handles are similar in reactivity to each other, limited in type, symmetrically positioned, and difficult to control. In this work, we demonstrate the use of polymer shells as adjustable masks for nanosynthesis, where the different modes of shell transformation allow unconventional designs beyond facet control. In contrast to ligands, which bind dynamically and individually, the polymer masks are firmly attached as sizeable patches but at the same time are easy to manipulate, allowing versatile and multi-step functionalization of colloidal particles at selective locations.

61 citations

Journal ArticleDOI
TL;DR: Investigation of vegetation changes during growth season from April to October were investigated through examining the trends in the Normalized Difference Vegetation Index (NDVI), finding the elevation and grassland cover were found to mainly account for variations in NDVI trend.

61 citations

Journal ArticleDOI
11 Feb 2013-Small
TL;DR: As a proof of concept, the gas sensor fabricated with a single reduced GO scroll is used to detect NO(2) gas with a concentration as low as 0.4 ppm.
Abstract: Well-aligned graphene oxide (GO) scrolls are prepared through the controlled folding/scrolling of single-layer GO sheets using molecular combing on hydrophobic substrates, such as aged gold substrate, polydimethylsiloxane film, poly(L-lactic acid) film, and octadecyltrimethoxysilane-modified silicon dioxide. As a proof of concept, the gas sensor fabricated with a single reduced GO scroll is used to detect NO(2) gas with a concentration as low as 0.4 ppm.

61 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This work reviews the historical development of Transition metal dichalcogenides, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.
Abstract: Single-layer metal dichalcogenides are two-dimensional semiconductors that present strong potential for electronic and sensing applications complementary to that of graphene.

13,348 citations