scispace - formally typeset
Search or ask a question
Author

Huabao Xiong

Bio: Huabao Xiong is an academic researcher from Icahn School of Medicine at Mount Sinai. The author has contributed to research in topics: Cellular differentiation & Immune system. The author has an hindex of 47, co-authored 115 publications receiving 8205 citations. Previous affiliations of Huabao Xiong include Mount Sinai Health System & Jining Medical University.


Papers
More filters
Journal ArticleDOI
TL;DR: The data suggest that the Tim-3–galectin-9 pathway may have evolved to ensure effective termination of effector TH1 cells.
Abstract: Tim-3 is a T helper type 1 (T(H)1)-specific cell surface molecule that seems to regulate T(H)1 responses and the induction of peripheral tolerance. However, the identity of the Tim-3 ligand and the mechanism by which this ligand inhibits the function of effector T(H)1 cells remain unknown. Here we show that galectin-9 is the Tim-3 ligand. Galectin-9-induced intracellular calcium flux, aggregation and death of T(H)1 cells were Tim-3-dependent in vitro, and administration of galectin-9 in vivo resulted in selective loss of interferon-gamma-producing cells and suppression of T(H)1 autoimmunity. These data suggest that the Tim-3-galectin-9 pathway may have evolved to ensure effective termination of effector T(H)1 cells.

1,683 citations

Journal ArticleDOI
TL;DR: It is shown that Toll-like receptors, including TLR4, are expressed on tumor cells from a wide variety of tissues, suggesting that TLR activation may be an important event in tumor cell immune evasion.
Abstract: The signal pathways that trigger tumor cell escape from immune surveillance are incompletely understood. Toll-like receptors (TLRs), which activate innate and adaptive immune responses, are thought to be restricted to immune cells. We show here that TLRs, including TLR4, are expressed on tumor cells from a wide variety of tissues, suggesting that TLR activation may be an important event in tumor cell immune evasion. Activation of TLR4 signaling in tumor cells by lipopolysaccharide induces the synthesis of various soluble factors and proteins including interleukin-6, inducible nitric oxide synthase, interleukin-12, B7-H1, and B7-H2, and results in resistance of tumor cells to CTL attack. In addition, lipopolysaccharide-stimulated tumor cell supernatants inhibit both T cell proliferation and natural killer cell activity. Blockade of the TLR4 pathway by either TLR4 short interfering RNA or a cell-permeable TLR4 inhibitory peptide reverses tumor-mediated suppression of T cell proliferation and natural killer cell activity in vitro, and in vivo, delays tumor growth and thus prolongs the survival of tumor-bearing mice. These findings indicate that TLR signaling results in a cascade leading to tumor evasion from immune surveillance. These novel functions of TLRs in tumor biology suggest a new class of therapeutic targets for cancer therapy.

513 citations

Journal ArticleDOI
25 Oct 2013-Science
TL;DR: It is shown that the small intestine has a porous mucus layer, which permitted the uptake of MUC2 by antigen-sampling dendritic cells (DCs) and constrains the immunogenicity of gut antigens by delivering tolerogenic signals.
Abstract: A dense mucus layer in the large intestine prevents inflammation by shielding the underlying epithelium from luminal bacteria and food antigens. This mucus barrier is organized around the hyperglycosylated mucin MUC2. Here we show that the small intestine has a porous mucus layer, which permitted the uptake of MUC2 by antigen-sampling dendritic cells (DCs). Glycans associated with MUC2 imprinted DCs with anti-inflammatory properties by assembling a galectin-3-Dectin-1-FcγRIIB receptor complex that activated β-catenin. This transcription factor interfered with DC expression of inflammatory but not tolerogenic cytokines by inhibiting gene transcription through nuclear factor κB. MUC2 induced additional conditioning signals in intestinal epithelial cells. Thus, mucus does not merely form a nonspecific physical barrier, but also constrains the immunogenicity of gut antigens by delivering tolerogenic signals.

493 citations

Journal ArticleDOI
29 Jun 2012-Immunity
TL;DR: Csf-2 is important in vaccine-induced CD8(+) T cell immunity through the regulation of nonlymphoid tissue DC homeostasis rather than control of inflammatory DCs in vivo.

392 citations

Journal ArticleDOI
15 Aug 2008-Blood
TL;DR: It is reported that tumor-infiltrating mast cells remodel tumor micro environment and promote tumor growth and suggested that mast cells are not only a participator but also a critical regulator of inflammation and immunosuppression in the tumor microenvironment.

300 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Preliminary clinical findings with blockers of additional immune-checkpoint proteins, such as programmed cell death protein 1 (PD1), indicate broad and diverse opportunities to enhance antitumour immunity with the potential to produce durable clinical responses.
Abstract: Immune checkpoints refer to the plethora of inhibitory pathways that are crucial to maintaining self-tolerance. Tumour cells induce immune checkpoints to evade immunosurveillance. This Review discusses the progress in targeting immune checkpoints, the considerations for combinatorial therapy and the potential for additional immune-checkpoint targets.

10,602 citations

Journal ArticleDOI
27 Mar 2014-Cell
TL;DR: In high-income countries, overuse of antibiotics, changes in diet, and elimination of constitutive partners, such as nematodes, may have selected for a microbiota that lack the resilience and diversity required to establish balanced immune responses.

3,257 citations

Journal ArticleDOI
TL;DR: The immune system recognizes and is poised to eliminate cancer but is held in check by inhibitory receptors and ligands, so drugs interrupting immune checkpoints, such as anti-CTLA-4, anti-PD-1, and others in early development, can unleash anti-tumor immunity and mediate durable cancer regressions.

3,097 citations

Journal ArticleDOI
TL;DR: A previously unrecognized pathway for the activation of tumor antigen–specific T-cell immunity that involves secretion of the high-mobility-group box 1 (HMGB1) alarmin protein by dying tumor cells and the action of HMGB1 on Toll-like receptor 4 (TLR4) expressed by dendritic cells (DCs) is described.
Abstract: Conventional cancer treatments rely on radiotherapy and chemotherapy. Such treatments supposedly mediate their effects via the direct elimination of tumor cells. Here we show that the success of some protocols for anticancer therapy depends on innate and adaptive antitumor immune responses. We describe in both mice and humans a previously unrecognized pathway for the activation of tumor antigen-specific T-cell immunity that involves secretion of the high-mobility-group box 1 (HMGB1) alarmin protein by dying tumor cells and the action of HMGB1 on Toll-like receptor 4 (TLR4) expressed by dendritic cells (DCs). During chemotherapy or radiotherapy, DCs require signaling through TLR4 and its adaptor MyD88 for efficient processing and cross-presentation of antigen from dying tumor cells. Patients with breast cancer who carry a TLR4 loss-of-function allele relapse more quickly after radiotherapy and chemotherapy than those carrying the normal TLR4 allele. These results delineate a clinically relevant immunoadjuvant pathway triggered by tumor cell death.

2,666 citations

Journal ArticleDOI
TL;DR: Comparing the microbial signatures between the ileum, the rectum, and fecal samples indicates that at this early stage of disease, assessing the rectal mucosal-associated microbiome offers unique potential for convenient and early diagnosis of CD.

2,410 citations