scispace - formally typeset
Search or ask a question
Author

Huai Yang

Bio: Huai Yang is an academic researcher from Sichuan Agricultural University. The author has contributed to research in topics: Medicine & Biology. The author has an hindex of 1, co-authored 4 publications receiving 6 citations.
Topics: Medicine, Biology, Gene, Genome, Genetics

Papers
More filters
Journal ArticleDOI
TL;DR: It is generally found that changes in photosynthesis in the early stage of pathogen infection could be a causal factor influencing acquired resistance, while those in the late stage could be the result of resistance formation.
Abstract: Photosynthesis is a universal process for plant survival, and immune defense is also a key process in adapting to the growth environment. Various studies have indicated that these two processes are interconnected in a complex network. Photosynthesis can influence signaling pathways and provide both materials and energy for immune defense, while the immune defense process can also have feedback effects on photosynthesis. Pathogen infection inevitably leads to changes in photosynthesis parameters, including Pn, Gs, and Ci; biochemical materials such as SOD and CAT; signaling molecules such as H2O2 and hormones; and the expression of genes involved in photosynthesis. Some researchers have found that changes in photosynthesis activity are related to the resistance level of the host, the duration after infection, and the infection position (photosynthetic source or sink). Interactions between wheat and the main fungal pathogens, such as Puccinia striiformis, Blumeria graminis, and Fusarium graminearum, constitute an ideal study system to elucidate the relationship between changes in host photosynthesis and resistance levels, based on the accessibility of methods for artificially controlling infection and detecting changes in photosynthesis, the presence of multiple pathogens infecting different positions, and the abundance of host materials with various resistance levels. This review is written only from the perspective of plant pathologists, and after providing an overview of the available data, we generally found that changes in photosynthesis in the early stage of pathogen infection could be a causal factor influencing acquired resistance, while those in the late stage could be the result of resistance formation.

31 citations

Journal ArticleDOI
TL;DR: Akebia trifoliata is an important multiuse perennial plant that often suffers attacks from various pathogens due to its long growth cycle, seriously affecting its commercial value as discussed by the authors.
Abstract: Akebia trifoliata is an important multiuse perennial plant that often suffers attacks from various pathogens due to its long growth cycle, seriously affecting its commercial value. The absence of research on the resistance (R) genes of A. trifoliata has greatly limited progress in the breeding of resistant varieties. Genes encoding proteins containing nucleotide binding sites (NBSs) and C-terminal leucine-rich repeats (LRRs), the largest family of plant resistance (R) genes, are vital for plant disease resistance. A comprehensive genome-wide analysis showed that there were only 73 NBS genes in the A. trifoliata genome, including three main subfamilies (50 coiled coil (CC)-NBS-LRR (CNL), 19 Toll/interleukin-1 receptor (TIR)-NBS-LRR (TNL) and four resistance to powdery mildew8 (RPW8)-NBS-LRR (RNL) genes). Additionally, 64 mapped NBS candidates were unevenly distributed on 14 chromosomes, most of which were assigned to the chromosome ends; 41 of these genes were located in clusters, and the remaining 23 genes were singletons. Both the CNLs and TNLs were further divided into four subgroups, and the CNLs had fewer exons than the TNLs. Structurally, all eight previously reported conserved motifs were identified in the NBS domains, and both their order and their amino acid sequences exhibited high conservation. Evolutionarily, tandem and dispersed duplications were shown to be the two main forces responsible for NBS expansion, producing 33 and 29 genes, respectively. A transcriptome analysis of three fruit tissues at four developmental stages showed that NBS genes were generally expressed at low levels, while a few of these genes showed relatively high expression during later development in rind tissues. Overall, this research is the first to identify and characterize A. trifoliata NBS genes and is valuable for both the development of new resistant cultivars and the study of molecular mechanisms of resistance.

15 citations

Journal ArticleDOI
TL;DR: The downregulation of photosynthesis-related genes likely led to a decline in photosynthesis, which may be combined with the inhibition of peroxidase (POD) and catalase (CAT) to generate two stages of H2O2 accumulation.
Abstract: Photosynthesis is not only a primary generator of reactive oxygen species (ROS) but also a component of plant defence. To determine the relationships among photosynthesis, ROS, and defence responses to powdery mildew in wheat, we compared the responses of the Pm40-expressing wheat line L658 and its susceptible sister line L958 at 0, 6, 12, 24, 48, and 72 h post-inoculation (hpi) with powdery mildew via analyses of transcriptomes, cytology, antioxidant activities, photosynthesis, and chlorophyll fluorescence parameters. The results showed that H2O2 accumulation in L658 was significantly greater than that in L958 at 6 and 48 hpi, and the enzymes activity and transcripts expression of peroxidase and catalase were suppressed in L658 compared with L958. In addition, the inhibition of photosynthesis in L658 paralleled the global downregulation of photosynthesis-related genes. Furthermore, the expression of the salicylic acid-related genes non-expressor of pathogenesis related genes 1 (NPR1), pathogenesis-related 1 (PR1), and pathogenesis-related 5 (PR5) was upregulated, while the expression of jasmonic acid- and ethylene-related genes was inhibited in L658 compared with L958. In conclusion, the downregulation of photosynthesis-related genes likely led to a decline in photosynthesis, which may be combined with the inhibition of peroxidase (POD) and catalase (CAT) to generate two stages of H2O2 accumulation. The high level of H2O2, salicylic acid and PR1 and PR5 in L658 possible initiated the hypersensitive response.

12 citations

Journal ArticleDOI
TL;DR: Akebia trifoliata (three-leaf akebia) has long been used as a medicinal herb and has the potential to be used in diverse ways, especially as a fruit crop as mentioned in this paper .
Abstract: Akebia trifoliata (three-leaf akebia) has long been used as a medicinal herb and has the potential to be used in diverse ways, especially as a fruit crop. However, efforts to domesticate and cultivate new varieties for commercial use are only in their infancy. Here, we evaluated the genetic diversity of 29 genotypes, which were previously selected from a natural population consisting of 1447 genotypes and exhibiting high resistance to fungal diseases and a smooth peel of A. trifoliata using 85 genome-specific single sequence repeat (SSR) markers. We also characterized variation in 19 phenotypic traits and nutritional components. Large variation in phenotypic traits and nutritional components was observed, especially in vitamin C, seed/pulp, and fruit color. Correlation analyses revealed that many phenotypic traits and nutritional components were significantly correlated. A principal component analysis identified five principal components, which explained 83.2% of the total variation in the data. The results of the SSR analysis revealed that 80 of the 85 SSR markers were polymorphic; the total number of alleles amplified was 532. The expected heterozygosity was 0.672, and Shannon’s information index was 1.328. A Ward dendrogram and unweighted pair group method with arithmetic mean dendrogram revealed high diversity among the 29 genotypes and suggested that the measured morphological and nutritional traits were genetically independent of disease resistance and texture traits, as well as SSR marker loci. Finally, our results suggest that additional rounds of selection from the selected population, despite its small size, could be effective for the development of new A. trifoliata fruit cultivars.

10 citations

Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors identified and cloned the TraesCS7B01G164000 with a total length of 4883 bp, including three exons and two introns, and encoded a protein carrying the CC-NBS-LRR domain in the Pm40-linked region flanked by two EST markers, BF478514 and BF291338, by integrating analysis of gene annotation in wheat reference genome and both sequence and expression difference in available transcriptome data.
Abstract: Wheat powdery mildew, caused by the obligate parasite Blumeria graminis f. sp. tritici, severely reduces wheat yields. Identifying durable and effective genes against wheat powdery mildew and further transferring them into wheat cultivars is important for finally controlling this disease in wheat production. Pm40 has been widely used in wheat breeding programs in Southwest China due to the spectrum and potentially durable resistance to powdery mildew. In the present study, a resistance test demonstrated that Pm40 is still effective against the Bgt race E20. We identified and cloned the TraesCS7B01G164000 with a total length of 4883 bp, including three exons and two introns, and encoded a protein carrying the CC-NBS-NBS-LRR domain in the Pm40-linked region flanked by two EST markers, BF478514 and BF291338, by integrating analysis of gene annotation in wheat reference genome and both sequence and expression difference in available transcriptome data. Two missense mutations were detected at positions 68 and 83 in the CC domain. The results of both cosegregation linkage analysis and qRT-PCR also suggested that TraesCS7B01G164000 was a potential candidate gene of Pm40. This study allowed us to move toward the final successfully clone and apply Pm40 in wheat resistance improvement by gene engineering.

8 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is generally found that changes in photosynthesis in the early stage of pathogen infection could be a causal factor influencing acquired resistance, while those in the late stage could be the result of resistance formation.
Abstract: Photosynthesis is a universal process for plant survival, and immune defense is also a key process in adapting to the growth environment. Various studies have indicated that these two processes are interconnected in a complex network. Photosynthesis can influence signaling pathways and provide both materials and energy for immune defense, while the immune defense process can also have feedback effects on photosynthesis. Pathogen infection inevitably leads to changes in photosynthesis parameters, including Pn, Gs, and Ci; biochemical materials such as SOD and CAT; signaling molecules such as H2O2 and hormones; and the expression of genes involved in photosynthesis. Some researchers have found that changes in photosynthesis activity are related to the resistance level of the host, the duration after infection, and the infection position (photosynthetic source or sink). Interactions between wheat and the main fungal pathogens, such as Puccinia striiformis, Blumeria graminis, and Fusarium graminearum, constitute an ideal study system to elucidate the relationship between changes in host photosynthesis and resistance levels, based on the accessibility of methods for artificially controlling infection and detecting changes in photosynthesis, the presence of multiple pathogens infecting different positions, and the abundance of host materials with various resistance levels. This review is written only from the perspective of plant pathologists, and after providing an overview of the available data, we generally found that changes in photosynthesis in the early stage of pathogen infection could be a causal factor influencing acquired resistance, while those in the late stage could be the result of resistance formation.

31 citations

Journal ArticleDOI
TL;DR: Akebia trifoliata (three-leaf akebia) has long been used as a medicinal herb and has the potential to be used in diverse ways, especially as a fruit crop as mentioned in this paper .
Abstract: Akebia trifoliata (three-leaf akebia) has long been used as a medicinal herb and has the potential to be used in diverse ways, especially as a fruit crop. However, efforts to domesticate and cultivate new varieties for commercial use are only in their infancy. Here, we evaluated the genetic diversity of 29 genotypes, which were previously selected from a natural population consisting of 1447 genotypes and exhibiting high resistance to fungal diseases and a smooth peel of A. trifoliata using 85 genome-specific single sequence repeat (SSR) markers. We also characterized variation in 19 phenotypic traits and nutritional components. Large variation in phenotypic traits and nutritional components was observed, especially in vitamin C, seed/pulp, and fruit color. Correlation analyses revealed that many phenotypic traits and nutritional components were significantly correlated. A principal component analysis identified five principal components, which explained 83.2% of the total variation in the data. The results of the SSR analysis revealed that 80 of the 85 SSR markers were polymorphic; the total number of alleles amplified was 532. The expected heterozygosity was 0.672, and Shannon’s information index was 1.328. A Ward dendrogram and unweighted pair group method with arithmetic mean dendrogram revealed high diversity among the 29 genotypes and suggested that the measured morphological and nutritional traits were genetically independent of disease resistance and texture traits, as well as SSR marker loci. Finally, our results suggest that additional rounds of selection from the selected population, despite its small size, could be effective for the development of new A. trifoliata fruit cultivars.

10 citations

Journal ArticleDOI
01 May 2022-Plants
TL;DR: In this article , a disease susceptibility index (DSI) was developed and validated using chlorophyll a (Chla) fluorescence as a tool to identify Mesoamerican and Andean lines of common bean (Phaseolus vulgaris L.) that are resistant to pathogens.
Abstract: The evaluation of disease resistance is considered an important aspect of phenotyping for crop improvement. Identification of advanced lines of the common bean with disease resistance contributes to improved grain yields. This study aimed to determine the response of the photosynthetic apparatus to natural pathogen infection by using chlorophyll (Chla) fluorescence parameters and their relationship to the agronomic performance of 59 common bean lines and comparing the photosynthetic responses of naturally infected vs. healthy leaves. The study was conducted over two seasons under acid soil and high temperature conditions in the western Amazon region of Colombia. A disease susceptibility index (DSI) was developed and validated using chlorophyll a (Chla) fluorescence as a tool to identify Mesoamerican and Andean lines of common bean (Phaseolus vulgaris L.) that are resistant to pathogens. A negative effect on the functional status of the photosynthetic apparatus was found with the presence of pathogen infection, a situation that allowed the identification of four typologies based on the DSI values ((i) moderately resistant; (ii) moderately susceptible; (iii) susceptible; and (iv) highly susceptible). Moderately resistant lines, five of them from the Mesoamerican gene pool (ALB 350, SMC 200, BFS 10, SER 16, SMN 27) and one from the Andean gene pool (DAB 295), allocated a higher proportion of energy to photochemical processes, which increased the rate of electron transfer resulting in a lower sensitivity to disease stress. This photosynthetic response was associated with lower values of DSI, which translated into an increase in the accumulation of dry matter accumulation in different plant organs (leaves, stem, pods and roots). Thus, DSI values based on chlorophyll fluorescence response to pathogen infection could serve as a phenotyping tool for evaluating advanced common bean lines. Six common bean lines (ALB 350, BFS 10, DAB 295, SER 16, SMC 200 and SMN 27) were identified as less sensitive to disease stress under field conditions in the western Amazon region of Colombia, and these could serve as useful parents for improving the common bean for multiple stress resistance.

10 citations

Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors identified and cloned the TraesCS7B01G164000 with a total length of 4883 bp, including three exons and two introns, and encoded a protein carrying the CC-NBS-LRR domain in the Pm40-linked region flanked by two EST markers, BF478514 and BF291338, by integrating analysis of gene annotation in wheat reference genome and both sequence and expression difference in available transcriptome data.
Abstract: Wheat powdery mildew, caused by the obligate parasite Blumeria graminis f. sp. tritici, severely reduces wheat yields. Identifying durable and effective genes against wheat powdery mildew and further transferring them into wheat cultivars is important for finally controlling this disease in wheat production. Pm40 has been widely used in wheat breeding programs in Southwest China due to the spectrum and potentially durable resistance to powdery mildew. In the present study, a resistance test demonstrated that Pm40 is still effective against the Bgt race E20. We identified and cloned the TraesCS7B01G164000 with a total length of 4883 bp, including three exons and two introns, and encoded a protein carrying the CC-NBS-NBS-LRR domain in the Pm40-linked region flanked by two EST markers, BF478514 and BF291338, by integrating analysis of gene annotation in wheat reference genome and both sequence and expression difference in available transcriptome data. Two missense mutations were detected at positions 68 and 83 in the CC domain. The results of both cosegregation linkage analysis and qRT-PCR also suggested that TraesCS7B01G164000 was a potential candidate gene of Pm40. This study allowed us to move toward the final successfully clone and apply Pm40 in wheat resistance improvement by gene engineering.

8 citations

Journal ArticleDOI
TL;DR: In this article, the ndh genes provide a test for the natural selection of photosynthesis-related genes in evolution, and they are evolutionary endpoints in phylogenetic trees and functional investigations of the Ndh genes.
Abstract: The polypeptides encoded by the chloroplast ndh genes and some nuclear genes form the thylakoid NADH dehydrogenase (Ndh) complex, homologous to the mitochondrial complex I. Except for Charophyceae (algae related to higher plants) and a few Prasinophyceae, all eukaryotic algae lack ndh genes. Among vascular plants, the ndh genes are absent in epiphytic and in some species scattered among different genera, families, and orders. The recent identification of many plants lacking plastid ndh genes allows comparison on phylogenetic trees and functional investigations of the ndh genes. The ndh genes protect Angiosperms under various terrestrial stresses, maintaining efficient photosynthesis. On the edge of dispensability, ndh genes provide a test for the natural selection of photosynthesis-related genes in evolution. Variable evolutionary environments place Angiosperms without ndh genes at risk of extinction and, probably, most extant ones may have lost ndh genes recently. Therefore, they are evolutionary endpoints in phylogenetic trees. The low number of sequenced plastid DNA and the long lifespan of some Gymnosperms lacking ndh genes challenge models about the role of ndh genes protecting against stress and promoting leaf senescence. Additional DNA sequencing in Gymnosperms and investigations into the molecular mechanisms of their response to stress will provide a unified model of the evolutionary and functional consequences of the lack of ndh genes.

7 citations