scispace - formally typeset
Search or ask a question
Author

Huan-Huan Ran

Bio: Huan-Huan Ran is an academic researcher from Southeast University. The author has contributed to research in topics: Cancer & Surface plasmon resonance. The author has an hindex of 5, co-authored 8 publications receiving 127 citations.

Papers
More filters
Journal ArticleDOI
Xiaotong Cheng1, Hai-Dong Xu1, Huan-Huan Ran1, Gaolin Liang1, Fu-Gen Wu1 
11 May 2021-ACS Nano
TL;DR: A review of GSH depletion-based cancer therapies can be found in this article, where the authors present some current challenges and future perspectives for GSH-depleting nanomedicine based cancer therapies.
Abstract: Cancer cells frequently exhibit resistance to various molecular and nanoscale drugs, which inevitably affects the drugs' therapeutic outcomes. Overexpression of glutathione (GSH) has been observed in many cancer cells, and solid evidence has corroborated the resulting tumor resistance to a variety of anticancer therapies, suggesting that this biochemical characteristic of cancer cells can be developed as a potential target for cancer treatments. The single treatment of GSH-depleting agents can potentiate the responses of the cancer cells to different cell death stimuli; therefore, as an adjunctive strategy, GSH depletion is usually combined with mainstream cancer therapies for enhancing the therapeutic outcomes. Propelled by the rapid development of nanotechnology, GSH-depleting agents can be readily constructed into anticancer nanomedicines, which have shown a steep rise over the past decade. Here, we review the common GSH-depleting nanomedicines which have been widely applied in synergistic cancer treatments in recent years. Some current challenges and future perspectives for GSH depletion-based cancer therapies are also presented. With the understanding of the structure-property relationship and action mechanisms of these biomaterials, we hope that the GSH-depleting nanotechnology will be further developed to realize more effective disease treatments and even achieve successful clinical translations.

133 citations

Journal ArticleDOI
TL;DR: The work highlights the feasibility of using cationic and ultrasmall metal-free CDs to eliminate and inhibit Gram-positive bacterial biofilms, which represents a highly effective strategy to cope with refractory biofilm-associated infections.
Abstract: Biofilm formation can lead to the treatment failure of persistent bacterial infections. Although a variety of antibacterial agents have been developed, the restricted drug penetration and the embedded bacteria's potentiated recalcitrance to these agents synergistically lead to the unsatisfactory anti-biofilm effect. Herein, we report the applications of metal-free quaternized carbon dots (CDs) in imaging and eliminating bacterial biofilms. The CDs prepared by the solvothermal treatment of dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride (abbreviated as Si-QAC) and glycerol possess ultrasmall size (ca. 3.3 ± 0.4 nm) and strong positively charged (zeta potential: ca. +33.1 ± 2.5 mV) surfaces with long alkyl chain-linked quaternary ammonium groups. The small size of the CDs endows them with the penetration ability into the interior of Gram-negative and Gram-positive bacterial biofilms, which enables excellent fluorescence imaging of the biofilms. Due to the different surfaces of the two types of bacteria, the positively charged CDs selectively interact with the more negatively charged Gram-positive bacteria via electrostatic and hydrophobic interactions, which inactivates the Gram-positive bacteria and ultimately eradicates the Gram-positive bacterial biofilms. In addition, we synthesize a new type of quaternized CDs without long alkyl chains (termed TTPAC CDs), and validate that the long alkyl chains potentiate the hydrophobic adhesion between CDs and Gram-positive bacteria. Meanwhile, the crystal violet staining results reveal that the cationic CDs inhibit the formation of Gram-positive bacterial biofilms. Collectively, our work highlights the feasibility of using cationic and ultrasmall metal-free CDs to eliminate and inhibit Gram-positive bacterial biofilms, which represents a highly effective strategy to cope with refractory biofilm-associated infections.

87 citations

Journal ArticleDOI
Yan-Wen Bao1, Xian-Wu Hua1, Huan-Huan Ran1, Jia Zeng1, Fu-Gen Wu1 
TL;DR: A new synthetic method of metal-doped carbon nanomaterials is developed and their capability for the sensitive and selective detection of H2O2 and glucose is demonstrated, which may foster the development of new nanozymes for biosensing applications.
Abstract: Nanomaterial-based enzyme mimics (nanozymes) are attracting increasing attention because of their low production cost, high stability against denaturation, and resistance to high concentrations of substrates. Here, carbon nanoparticles doped with a small amount (<5 mol%) of Pt (denoted as PtCNPs) are synthesized via a facile, cost-effective hydrothermal treatment of p-phenylenediamine (PPD) and K2PtCl4. The obtained PtCNPs possess high aqueous stability, excellent water-dispersibility, and suitable size (∼15 nm). More interestingly, the PtCNPs exhibit an intrinsic peroxidase-like activity that can quickly catalyze 3,3′,5,5′-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide (H2O2) and produce a blue color. Importantly, since satisfactory catalytic properties were also observed when K2PtCl4 was replaced with CuCl2, NiCl2, or Na2PdCl4 during the synthesis, the PPD- and inorganic metal salt-involved hydrothermal synthetic approach may be developed as a general and simple way to fabricate new nanozymes. Besides, the steady-state kinetics reveals that the PtCNPs have a stronger affinity for TMB and a weaker affinity for H2O2 compared with horseradish peroxidase. On the basis of the color reaction, a colorimetric detection method for H2O2 and glucose has been successfully established with a detection limit of 0.15 and 0.30 μM, respectively. Further, the method has also been successfully applied for glucose detection in human serum samples. To sum up, this work develops a new synthetic method of metal-doped carbon nanomaterials and demonstrates their capability for the sensitive and selective detection of H2O2 and glucose, which may foster the development of new nanozymes for biosensing applications.

61 citations

Journal ArticleDOI
TL;DR: The rationally designed TCPP-TG NPs are a promising antibacterial agent for effective aPDT and show excellent water dispersity and stability during 4 months of storage.
Abstract: Bacterial infection has become an urgent health problem in the world. Especially, the evolving resistance of bacteria to antibiotics makes the issue more challenging, and thus new treatments to fight these infections are needed. Antibacterial photodynamic therapy (aPDT) is recognized as a novel and promising method to inactivate a wide range of bacteria with few possibilities to develop drug resistance. However, the photosensitizers (PSs) are not effective against Gram-negative bacteria in many cases. Herein, we use conjugated meso-tetra(4-carboxyphenyl)porphine (TCPP) and triaminoguanidinium chloride (TG) to construct self-assembled cationic TCPP-TG nanoparticles (NPs) for efficient bacterial inactivation under visible light illumination. The TCPP-TG NPs can rapidly adhere to both Gram-negative and Gram-positive bacteria and display promoted singlet oxygen (1O2) generation compared with TCPP under light irradiation. The high local positive charge density of TCPP-TG NPs facilitates the interaction between the NPs and bacteria. Consequently, the TCPP-TG NPs produce an elevated concentration of local 1O2 under light irradiation, resulting in an extraordinarily high antibacterial efficiency (99.9999% inactivation of the representative bacteria within 4 min). Furthermore, the TCPP-TG NPs show excellent water dispersity and stability during 4 months of storage. Therefore, the rationally designed TCPP-TG NPs are a promising antibacterial agent for effective aPDT.

36 citations

Journal ArticleDOI
22 Mar 2020
TL;DR: The bacterial infections, especially the chronic infections caused by bacterial biofilms, have become a worldwide threat to public health and the synergistic actions of two or more anti-bacterial drugs can help to reduce these threats.
Abstract: The bacterial infections, especially the chronic infections caused by bacterial biofilms, have become a worldwide threat to public health. Encouragingly, the synergistic actions of two or more anti...

35 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An overview of polydopamine (PDA) antibacterial materials is provided in this paper, where the fabrication strategies and antibacterial mechanisms of PDA-based composite materials are discussed.
Abstract: Recently, the development of polydopamine (PDA) has demonstrated numerous excellent performances in free radical scavenging, UV shielding, photothermal conversion, and biocompatibility. These unique properties enable PDA to be widely used as efficient antibacterial materials for various applications. Accordingly, PDA antibacterial materials mainly include free-standing PDA materials and PDA-based composite materials. In this review, an overview of PDA antibacterial materials is provided to summarize these two types of antibacterial materials in detail, including the fabrication strategies and antibacterial mechanisms. The future development and challenges of PDA in this field are also presented. It is hoped that this review will provide an insight into the future development of antibacterial functional materials based on PDA.

173 citations

Journal ArticleDOI
TL;DR: It is found that the addition of varied metal ions during the hydrothermal treatment of p-phenylenediamine leads to the formation of red emissive CDs with QYs varying from 1.6% to 45.6%, and the obtained CDs are metal-free and the metal ions play a role similar to a "catalyst" during the CD formation.
Abstract: Red-emitting carbon dots (CDs) have attracted tremendous attention due to their wide applications in areas including imaging, sensing, drug delivery, and cancer therapy. However, it is still highly...

147 citations

Journal ArticleDOI
02 Nov 2021-Small
TL;DR: In this article, the latest advancements in the nanomaterials-involved CDT from 2018 to the present and proposes the current limitations as well as future research directions in the related field.
Abstract: Chemodynamic therapy (CDT), a novel cancer therapeutic strategy defined as the treatment using Fenton or Fenton-like reaction to produce •OH in the tumor region, was first proposed by Bu, Shi, and co-workers in 2016. Recently, with the rapid development of Fenton and Fenton-like nanomaterials, CDT has attracted tremendous attention because of its unique advantages: 1) It is tumor-selective with low side effects; 2) the CDT process does not depend on external field stimulation; 3) it can modulate the hypoxic and immunosuppressive tumor microenvironment; 4) the treatment cost of CDT is low. In addition to the Fe-involved CDT strategies, the Fenton-like reaction-mediated CDT strategies have also been proposed, which are based on many other metal elements including copper, manganese, cobalt, titanium, vanadium, palladium, silver, molybdenum, ruthenium, tungsten, cerium, and zinc. Moreover, CDT has been combined with other therapies like chemotherapy, radiotherapy, phototherapy, sonodynamic therapy, and immunotherapy for achieving enhanced anticancer effects. Besides, there have also been studies that extend the application of CDT to the antibacterial field. This review introduces the latest advancements in the nanomaterials-involved CDT from 2018 to the present and proposes the current limitations as well as future research directions in the related field.

130 citations

Journal ArticleDOI
TL;DR: This review provides concise insights into the recent development of CDs in nanomedicine research, including preparation and functionalization processes, and a few critical applications are highlighted, such as antibacterial applications, chemotherapy, and therapeutics.

119 citations

Journal ArticleDOI
TL;DR: The enzymatic characteristics and recent advances of carbon nanozymes are introduced, their significant applications in biomedicine are summarized, and they can offer a variety of multifunctional platforms for biomedical applications.
Abstract: Nanozymes are nanomaterials with enzyme-like properties that have attracted significant interest owing to their capability to address the limitations of traditional enzymes such as fragility, high cost, and impossible mass production. Over the past decade, a broad variety of nanomaterials have been found to mimic the enzyme-like activity by engineering the active centers of natural enzymes or developing multivalent elements within nanostructures. Carbon nanomaterials with well-defined electronic and geometric structures have served as favorable surrogates of traditional enzymes by mimicking the highly evolved catalytic center of natural enzymes. In particular, by combining the unique electronic, optical, thermal, and mechanical properties, carbon nanomaterials-based nanozymes can offer a variety of multifunctional platforms for biomedical applications. In this review, we will introduce the enzymatic characteristics and recent advances of carbon nanozymes, and summarize their significant applications in biomedicine.

92 citations