scispace - formally typeset
Search or ask a question
Author

Huan Liu

Bio: Huan Liu is an academic researcher from Huazhong University of Science and Technology. The author has contributed to research in topics: Quantum dot & Ceramic. The author has an hindex of 34, co-authored 125 publications receiving 5624 citations. Previous affiliations of Huan Liu include Chinese Ministry of Education & University of Toronto.


Papers
More filters
Journal ArticleDOI
TL;DR: An atomic ligand strategy is established that makes use of monovalent halide anions to enhance electronic transport and successfully passivate surface defects in PbS CQD films that shows up to 6% solar AM1.5G power-conversion efficiency.
Abstract: Colloidal-quantum-dot (CQD) optoelectronics offer a compelling combination of solution processing and spectral tunability through quantum size effects. So far, CQD solar cells have relied on the use of organic ligands to passivate the surface of the semiconductor nanoparticles. Although inorganic metal chalcogenide ligands have led to record electronic transport parameters in CQD films, no photovoltaic device has been reported based on such compounds. Here we establish an atomic ligand strategy that makes use of monovalent halide anions to enhance electronic transport and successfully passivate surface defects in PbS CQD films. Both time-resolved infrared spectroscopy and transient device characterization indicate that the scheme leads to a shallower trap state distribution than the best organic ligands. Solar cells fabricated following this strategy show up to 6% solar AM1.5G power-conversion efficiency. The CQD films are deposited at room temperature and under ambient atmosphere, rendering the process amenable to low-cost, roll-by-roll fabrication.

1,435 citations

Journal ArticleDOI
TL;DR: Using density functional theory, inorganic passivants that bind strongly to the CQD surface and repel oxidative attack are identified that are used to build an air-stable n-type inverted quantum junction device and a solar power conversion efficiency as high as 8%.
Abstract: Colloidal quantum dots (CQDs) offer promise in flexible electronics, light sensing and energy conversion. These applications rely on rectifying junctions that require the creation of high-quality CQD solids that are controllably n-type (electron-rich) or p-type (hole-rich). Unfortunately, n-type semiconductors made using soft matter are notoriously prone to oxidation within minutes of air exposure. Here we report high-performance, air-stable n-type CQD solids. Using density functional theory we identify inorganic passivants that bind strongly to the CQD surface and repel oxidative attack. A materials processing strategy that wards off strong protic attack by polar solvents enabled the synthesis of an air-stable n-type PbS CQD solid. This material was used to build an air-processed inverted quantum junction device, which shows the highest current density from any CQD solar cell and a solar power conversion efficiency as high as 8%. We also feature the n-type CQD solid in the rapid, sensitive, and specific detection of atmospheric NO2. This work paves the way for new families of electronic devices that leverage air-stable quantum-tuned materials.

531 citations

Journal ArticleDOI
TL;DR: In this paper, a colloidal quantum-dot solar cell with two junctions, each designed to absorb and convert different spectral bands of light within the solar spectrum, is presented.
Abstract: Researchers report a colloidal quantum-dot solar cell that features two junctions, each designed to absorb and convert different spectral bands of light within the solar spectrum. The device offers a power conversion efficiency of 4.2% and an open circuit voltage of 1.06 V.

396 citations

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate sensitive room-temperature H2S gas sensors based on SnO2 quantum wires that are anchored on reduced graphene oxide (rGO) nanosheets.
Abstract: Metal oxide/graphene nanocomposites are emerging as one of the promising candidate materials for developing high-performance gas sensors. Here, we demonstrate sensitive room-temperature H2S gas sensors based on SnO2 quantum wires that are anchored on reduced graphene oxide (rGO) nanosheets. Using a one-step colloidal synthesis strategy, the morphology-related quantum confinement of SnO2 can be well-controlled by tuning the reaction time, because of the steric hindrance effect of rGO. The as-synthesized SnO2 quantum wire/rGO nanocomposites are spin-coated onto ceramics substrates without further sintering to construct chemiresistive gas sensors. The optimal sensor response toward 50 ppm of H2S is 33 in 2 s, and it is fully reversible upon H2S release at 22 °C. In addition to the excellent gas adsorption of ultrathin SnO2 quantum wires, the superior sensing performance of SnO2 quantum wire/rGO nanocomposites can be attributed to the enhanced electron transport resulting from the favorable charge transfer of...

345 citations

Journal ArticleDOI
TL;DR: A gas sensor based on PbS colloidal quantum dots (CQDs) is constructed on a paper substrate, yielding flexible, rapid-response NO₂ gas sensors, fabricated from the solution phase, which are highly sensitive and fully recoverable at room temperature.
Abstract: A gas sensor based on PbS colloidal quantum dots (CQDs) is constructed on a paper substrate, yielding flexible, rapid-response NO₂ gas sensors, fabricated from the solution phase. The devices are highly sensitive and fully recoverable at room temperature, which is attributed to the excellent access of gas molecules to the CQD surface, realized by surface ligand removal, combined with the desirable binding energy of NO₂ with the PbS CQDs.

310 citations


Cited by
More filters
Journal ArticleDOI
Cheng-Xiang Wang1, Longwei Yin, Luyuan Zhang, Dong Xiang, Rui Gao 
15 Mar 2010-Sensors
TL;DR: A brief review of changes of sensitivity of conductometric semiconducting metal oxide gas sensors due to the five factors: chemical components, surface-modification and microstructures of sensing layers, temperature and humidity.
Abstract: Conductometric semiconducting metal oxide gas sensors have been widely used and investigated in the detection of gases. Investigations have indicated that the gas sensing process is strongly related to surface reactions, so one of the important parameters of gas sensors, the sensitivity of the metal oxide based materials, will change with the factors influencing the surface reactions, such as chemical components, surface-modification and microstructures of sensing layers, temperature and humidity. In this brief review, attention will be focused on changes of sensitivity of conductometric semiconducting metal oxide gas sensors due to the five factors mentioned above.

2,122 citations

Journal ArticleDOI
TL;DR: The simple mesoscopic CH(3)NH( 3)PbI(3)/TiO(2) heterojunction solar cell shows impressive photovoltaic performance, with short-circuit photocurrent J(sc)= 16.1 mA/cm(2), open-circuits photovvoltage V(oc) = 0.631 V, and a fill factor FF =0.57.
Abstract: We report for the first time on a hole conductor-free mesoscopic methylammonium lead iodide (CH3NH3PbI3) perovskite/TiO2 heterojunction solar cell, produced by deposition of perovskite nanoparticles from a solution of CH3NH3I and PbI2 in γ-butyrolactone on a 400 nm thick film of TiO2 (anatase) nanosheets exposing (001) facets. A gold film was evaporated on top of the CH3NH3PbI3 as a back contact. Importantly, the CH3NH3PbI3 nanoparticles assume here simultaneously the roles of both light harvester and hole conductor, rendering superfluous the use of an additional hole transporting material. The simple mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cell shows impressive photovoltaic performance, with short-circuit photocurrent Jsc= 16.1 mA/cm2, open-circuit photovoltage Voc = 0.631 V, and a fill factor FF = 0.57, corresponding to a light to electric power conversion efficiency (PCE) of 5.5% under standard AM 1.5 solar light of 1000 W/m2 intensity. At a lower light intensity of 100W/m2, a PCE of 7.3% was m...

1,799 citations

Journal ArticleDOI
TL;DR: It is demonstrated that a single thin film of the low-temperature solution-processed organometal trihalide perovskite absorber CH3NH3PbI3-xClx, sandwiched between organic contacts can exhibit devices with power-conversion efficiency of up to 10% on glass substrates and over 6% on flexible polymer substrates.
Abstract: Organometal trihalide perovskite solar cells offer the promise of a low-cost easily manufacturable solar technology, compatible with large-scale low-temperature solution processing. Within 1 year of development, solar-to-electric power-conversion efficiencies have risen to over 15%, and further imminent improvements are expected. Here we show that this technology can be successfully made compatible with electron acceptor and donor materials generally used in organic photovoltaics. We demonstrate that a single thin film of the low-temperature solution-processed organometal trihalide perovskite absorber CH3NH3PbI3-xClx, sandwiched between organic contacts can exhibit devices with power-conversion efficiency of up to 10% on glass substrates and over 6% on flexible polymer substrates. This work represents an important step forward, as it removes most barriers to adoption of the perovskite technology by the organic photovoltaic community, and can thus utilize the extensive existing knowledge of hybrid interfaces for further device improvements and flexible processing platforms.

1,539 citations

Journal ArticleDOI
16 Dec 2011-Science
TL;DR: It is demonstrated that MEG charge carriers can be collected in suitably designed QD solar cells, providing ample incentive to better understand MEG within isolated and coupled QDs as a research path to enhancing the efficiency of solar light harvesting technologies.
Abstract: Multiple exciton generation (MEG) is a process that can occur in semiconductor nanocrystals, or quantum dots (QDs), whereby absorption of a photon bearing at least twice the bandgap energy produces two or more electron-hole pairs. Here, we report on photocurrent enhancement arising from MEG in lead selenide (PbSe) QD-based solar cells, as manifested by an external quantum efficiency (the spectrally resolved ratio of collected charge carriers to incident photons) that peaked at 114 ± 1% in the best device measured. The associated internal quantum efficiency (corrected for reflection and absorption losses) was 130%. We compare our results with transient absorption measurements of MEG in isolated PbSe QDs and find reasonable agreement. Our findings demonstrate that MEG charge carriers can be collected in suitably designed QD solar cells, providing ample incentive to better understand MEG within isolated and coupled QDs as a research path to enhancing the efficiency of solar light harvesting technologies.

1,537 citations