Author

# Hudong Chen

Other affiliations: Dassault Systèmes, Dartmouth College, University of Delaware ...read more

Bio: Hudong Chen is an academic researcher from Exa Corporation. The author has contributed to research in topics: Lattice Boltzmann methods & Boltzmann equation. The author has an hindex of 37, co-authored 118 publications receiving 12272 citations. Previous affiliations of Hudong Chen include Dassault Systèmes & Dartmouth College.

##### Papers published on a yearly basis

##### Papers

More filters

••

TL;DR: A lattice Boltzmann model is developed which has the ability to simulate flows containing multiple phases and components and is highly efficient to compute on massively parallel computers.

Abstract: A lattice Boltzmann model is developed which has the ability to simulate flows containing multiple phases and components. Each of the components can be immiscible with the others and can have different mass values. The equilibrium state of each component can have a nonideal gas equation of state at a prescribed temperature exhibiting thermodynamic phase transitions. The scheme incorporated in this model is the introduction of an interparticle potential. The dynamical rules in this model are local so it is highly efficient to compute on massively parallel computers. This model has many applications in large-scale numerical simulations of various types of fluid flows.

2,719 citations

•

TL;DR: In this article, a lattice Boltzmann model is developed which has the ability to simulate flows containing multiple phases and components, each of the components can be immiscible with the others and can have different mass values.

Abstract: A lattice Boltzmann model is developed which has the ability to simulate flows containing multiple phases and components. Each of the components can be immiscible with the others and can have different mass values. The equilibrium state of each component can have a nonideal gas equation of state at a prescribed temperature exhibiting thermodynamic phase transitions. The scheme incorporated in this model is the introduction of an interparticle potential. The dynamical rules in this model are local so it is highly efficient to compute on massively parallel computers. This model has many application in large-scale numerical simulations of various types of fluid flows

2,300 citations

••

TL;DR: This paper shows that both of these effects of a non-Galilean invariance caused by a density-dependent coefficient in the convection term can be eliminated exactly in a lattice Boltzmann-equation model.

Abstract: It is known that the Frisch-Hasslacher-Pomeau lattice-gas automaton model and related models possess some rather unphysical effects. These are (1) a non-Galilean invariance caused by a density-dependent coefficient in the convection term, and (2) a velocity-dependent equation of state. In this paper, we show that both of these effects can be eliminated exactly in a lattice Boltzmann-equation model.

1,394 citations

••

TL;DR: The resulting discrete Boltzmann models are based on a kinetic representation of the fluid dynamics, hence the drawbacks in conventional higher-order hydrodynamic formulations can be avoided.

Abstract: We present in detail a theoretical framework for representing hydrodynamic systems through a systematic discretization of the Boltzmann kinetic equation. The work is an extension of a previously proposed formulation. Conventional lattice Boltzmann models can be shown to be directly derivable from this systematic approach. Furthermore, we provide here a clear and rigorous procedure for obtaining higher-order approximations to the continuum Boltzmann equation. The resulting macroscopic moment equations at each level of the systematic discretization give rise to the Navier–Stokes hydrodynamics and those beyond. In addition, theoretical indications to the order of accuracy requirements are given for each discrete approximation, for thermohydrodynamic systems, and for fluid systems involving long-range interactions. All these are important for complex and micro-scale flows and are missing in the conventional Navier–Stokes order descriptions. The resulting discrete Boltzmann models are based on a kinetic representation of the fluid dynamics, hence the drawbacks in conventional higher-order hydrodynamic formulations can be avoided.

914 citations

••

TL;DR: A numerical method, based on a discrete Boltzmann equation, is presented for solving the equations of magnetohydrodynamics (MHD), which appears to be more competitive with traditional solution methods.

Abstract: A numerical method, based on a discrete Boltzmann equation, is presented for solving the equations of magnetohydrodynamics (MHD). The algorithm provides advantages similar to the cellular automaton method in that it is local and easily adapted to parallel computing environments. Because of much lower noise levels and less stringent requirements on lattice size, the method appears to be more competitive with traditional solution methods. Examples show that the model accurately reproduces both linear and nonlinear MHD phenomena.

630 citations

##### Cited by

More filters

••

TL;DR: An overview of the lattice Boltzmann method, a parallel and efficient algorithm for simulating single-phase and multiphase fluid flows and for incorporating additional physical complexities, is presented.

Abstract: We present an overview of the lattice Boltzmann method (LBM), a parallel and efficient algorithm for simulating single-phase and multiphase fluid flows and for incorporating additional physical complexities. The LBM is especially useful for modeling complicated boundary conditions and multiphase interfaces. Recent extensions of this method are described, including simulations of fluid turbulence, suspension flows, and reaction diffusion systems.

6,565 citations

••

TL;DR: This article considers the empirical data and then reviews the main approaches to modeling pedestrian and vehicle traffic, including microscopic (particle-based), mesoscopic (gas-kinetic), and macroscopic (fluid-dynamic) models.

Abstract: Since the subject of traffic dynamics has captured the interest of physicists, many surprising effects have been revealed and explained. Some of the questions now understood are the following: Why are vehicles sometimes stopped by ``phantom traffic jams'' even though drivers all like to drive fast? What are the mechanisms behind stop-and-go traffic? Why are there several different kinds of congestion, and how are they related? Why do most traffic jams occur considerably before the road capacity is reached? Can a temporary reduction in the volume of traffic cause a lasting traffic jam? Under which conditions can speed limits speed up traffic? Why do pedestrians moving in opposite directions normally organize into lanes, while similar systems ``freeze by heating''? All of these questions have been answered by applying and extending methods from statistical physics and nonlinear dynamics to self-driven many-particle systems. This article considers the empirical data and then reviews the main approaches to modeling pedestrian and vehicle traffic. These include microscopic (particle-based), mesoscopic (gas-kinetic), and macroscopic (fluid-dynamic) models. Attention is also paid to the formulation of a micro-macro link, to aspects of universality, and to other unifying concepts, such as a general modeling framework for self-driven many-particle systems, including spin systems. While the primary focus is upon vehicle and pedestrian traffic, applications to biological or socio-economic systems such as bacterial colonies, flocks of birds, panics, and stock market dynamics are touched upon as well.

3,117 citations

••

01 Jan 1997

TL;DR: The boundary layer equations for plane, incompressible, and steady flow are described in this paper, where the boundary layer equation for plane incompressibility is defined in terms of boundary layers.

Abstract: The boundary layer equations for plane, incompressible, and steady flow are
$$\matrix{ {u{{\partial u} \over {\partial x}} + v{{\partial u} \over {\partial y}} = - {1 \over \varrho }{{\partial p} \over {\partial x}} + v{{{\partial ^2}u} \over {\partial {y^2}}},} \cr {0 = {{\partial p} \over {\partial y}},} \cr {{{\partial u} \over {\partial x}} + {{\partial v} \over {\partial y}} = 0.} \cr }$$

2,598 citations

••

TL;DR: In this article, a general technique for simulating solid-fluid suspensions is described, which combines Newtonian dynamics of the solid particles with a discretized Boltzmann equation for the fluid phase; the many-body hydrodynamic interactions are fully accounted for, both in the creeping flow regime and at higher Reynolds numbers.

Abstract: A new and very general technique for simulating solid–fluid suspensions is described; its most important feature is that the computational cost scales linearly with the number of particles. The method combines Newtonian dynamics of the solid particles with a discretized Boltzmann equation for the fluid phase; the many-body hydrodynamic interactions are fully accounted for, both in the creeping-flow regime and at higher Reynolds numbers. Brownian motion of the solid particles arises spontaneously from stochastic fluctuations in the fluid stress tensor, rather than from random forces or displacements applied directly to the particles. In this paper, the theoretical foundations of the technique are laid out, illustrated by simple analytical and numerical examples; in a companion paper (Part 2), extensive numerical tests of the method, for stationary flows, time-dependent flows, and finite-Reynolds-number flows, are reported.

2,073 citations

••

TL;DR: In this paper, Chen et al. used the half-way wall bounceback boundary condition for the 2-D Poiseuille flow with forcing to obtain second-order accuracy for the 3-D square duct flow.

Abstract: Pressure (density) and velocity boundary conditions inside a flow domain are studied for 2-D and 3-D lattice Boltzmann BGK models (LBGK) and a new method to specify these conditions are proposed. These conditions are constructed in consistency of the wall boundary condition based on an idea of bounceback of non-equilibrium distribution. When these conditions are used together with the improved incompressible LBGK model by Zou et al., the simulation results recover the analytical solution of the plane Poiseuille flow driven by pressure (density) difference with machine accuracy. Since the half-way wall bounceback boundary condition is very easy to implement and was shown theoretically to give second-order accuracy for the 2-D Poiseuille flow with forcing, it is used with pressure (density) inlet/outlet conditions proposed in this paper and in Chen et al. to study the 2-D Poiseuille flow and the 3-D square duct flow. The numerical results are approximately second-order accurate. The magnitude of the error of the half-way wall bounceback is comparable with that using some other published boundary conditions. Besides, the bounceback condition has a much better stability behavior than that of other boundary conditions.

2,001 citations