scispace - formally typeset
Search or ask a question
Author

Huei Wang

Bio: Huei Wang is an academic researcher from Michigan State University. The author has contributed to research in topics: Heartbeat & Microwave. The author has an hindex of 1, co-authored 1 publications receiving 274 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: An X-band microwave life-detection system has been developed for detecting the heartbeat and breathing of human subjects lying on the ground at a distance of about 30 m or located behind a cinder block wall.
Abstract: An X-band microwave life-detection system has been developed for detecting the heartbeat and breathing of human subjects lying on the ground at a distance of about 30 m or located behind a cinder block wall. The basic principle of the system is to illuminate the subject with a low-intensity microwave beam, and then from the back-scattered microwave signal, extract the heart and breathing signals that modulate it. The circuit description of the system and some experimental results are presented. Potential applications of the system are noted.

291 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper reviews recent advances in biomedical and healthcare applications of Doppler radar that remotely detects heartbeat and respiration of a human subject and reviews different architectures, baseband signal processing, and system implementations.
Abstract: This paper reviews recent advances in biomedical and healthcare applications of Doppler radar that remotely detects heartbeat and respiration of a human subject. In the last decade, new front-end architectures, baseband signal processing methods, and system-level integrations have been proposed by many researchers in this field to improve the detection accuracy and robustness. The advantages of noncontact detection have drawn interests in various applications, such as energy smart home, baby monitor, cardiopulmonary activity assessment, and tumor tracking. While many of the reported systems were bench-top prototypes for concept verification, several portable systems and integrated radar chips have been demonstrated. This paper reviews different architectures, baseband signal processing, and system implementations. Validations of this technology in a clinical environment will also be discussed.

625 citations

Journal ArticleDOI
TL;DR: Substantial improvements offered by the proposed phased-MIMO radar technique are demonstrated analytically and by simulations through analyzing the corresponding beam patterns and the achievable output signal-to-noise-plus-interference ratios.
Abstract: We propose a new technique for multiple-input multiple-output (MIMO) radar with colocated antennas which we call phased-MIMO radar. The new technique enjoys the advantages of the MIMO radar without sacrificing the main advantage of the phased-array radar which is the coherent processing gain at the transmitting side. The essence of the proposed technique is to partition the transmit array into a number of subarrays that are allowed to overlap. Then, each subarray is used to coherently transmit a waveform which is orthogonal to the waveforms transmitted by other subarrays. Coherent processing gain can be achieved by designing a weight vector for each subarray to form a beam towards a certain direction in space. Moreover, the subarrays are combined jointly to form a MIMO radar resulting in higher angular resolution capabilities. Substantial improvements offered by the proposed phased-MIMO radar technique as compared to the phased-array and MIMO radar techniques are demonstrated analytically and by simulations through analyzing the corresponding beam patterns and the achievable output signal-to-noise-plus-interference ratios. Both analytical and simulation results validate the effectiveness of the proposed phased-MIMO radar.

413 citations

Journal ArticleDOI
TL;DR: A new sensitive microwave life-detection system which can be used to locate human subjects buried earthquake rubble or hidden behind various barriers has been constructed and tested extensively.
Abstract: A new sensitive microwave life-detection which can be used to locate human subjects buried earthquake rubble or hidden behind various barriers has been constructed. This system operating at 1150 MHz or 450 MHz can detect the breathing and heartbeat signals of human subjects through an earthquake rubble or a construction barrier of about 10-ft thickness. The basic physical principle for the operation of a microwave life-detection system is rather simple. When a microwave beam of appropriate frequency (L or S band) is aimed at a pile of earthquake rubble covering a human subject or illuminated through a barrier obstructing a human subject, the microwave beam can penetrate the rubble or the barrier to reach the human subject. When the human subject is illuminated by a microwave beam, the reflected wave from the human subject will be modulated by tile subject's body movements, which include the breathing and the heartbeat. If the clutter consisting of the reflected wave from stationary background can be completely eliminated and the reflected wave from the human subject's body is properly modulated, the breathing and heartbeat signals of the subject can be extracted. Thus, a human subject buried under earthquake rubble or hidden behind barriers can be located. This system has been tested extensively in a simulated earthquake rubble in the laboratory and also in a field test using realistic earthquake rubble conducted by a Federal Emergency Management Agency (FEMA) Task Force.

407 citations

Proceedings ArticleDOI
22 Jun 2015
TL;DR: The extensive experiments demonstrate that the system can accurately capture vital signs during sleep under realistic settings, and achieve comparable or even better performance comparing to traditional and existing approaches, which is a strong indication of providing non-invasive, continuous fine-grained vital signs monitoring without any additional cost.
Abstract: Tracking human vital signs of breathing and heart rates during sleep is important as it can help to assess the general physical health of a person and provide useful clues for diagnosing possible diseases. Traditional approaches (e.g., Polysomnography (PSG)) are limited to clinic usage. Recent radio frequency (RF) based approaches require specialized devices or dedicated wireless sensors and are only able to track breathing rate. In this work, we propose to track the vital signs of both breathing rate and heart rate during sleep by using off-the-shelf WiFi without any wearable or dedicated devices. Our system re-uses existing WiFi network and exploits the fine-grained channel information to capture the minute movements caused by breathing and heart beats. Our system thus has the potential to be widely deployed and perform continuous long-term monitoring. The developed algorithm makes use of the channel information in both time and frequency domain to estimate breathing and heart rates, and it works well when either individual or two persons are in bed. Our extensive experiments demonstrate that our system can accurately capture vital signs during sleep under realistic settings, and achieve comparable or even better performance comparing to traditional and existing approaches, which is a strong indication of providing non-invasive, continuous fine-grained vital signs monitoring without any additional cost.

406 citations

Journal ArticleDOI
TL;DR: Several non-invasive microwave techniques for contact and remote sensing of circulatory and respiratory movements and volume changes have been developed, capable of registering instantaneous changes in fluid volume, pressure pulse, heart rate, and respiration rate in contact with body surface or at distances greater than 30 m.
Abstract: The ability non-invasively to detect and monitor the movement of tissues and organs from outside the body provides many worthwhile areas of potential biomedical applications. Several non-invasive microwave techniques for contact and remote sensing of circulatory and respiratory movements and volume changes have been developed. In general, these systems consist of a microwave generator, a sampling device, a transmitting-receiving antenna, a set of signal-conditioning and processing devices, and a display unit. They operate at continuous-wave frequencies between 1 and 35 GHz and make use of amplitude and phase information derived from the received signal. The average power density of energy radiated by present systems ranges from approximately 0.001–1.0 mW/cm2. These systems are capable of registering instantaneous changes in fluid volume, pressure pulse, heart rate, and respiration rate in contact with body surface or at distances greater than 30 m, or behind thick layers of non-conductive walls. 1992 Wiley-Liss, Inc.

290 citations