scispace - formally typeset
Search or ask a question
Author

Hugh Daigle

Other affiliations: Rice University, Chevron Corporation
Bio: Hugh Daigle is an academic researcher from University of Texas at Austin. The author has contributed to research in topics: Clathrate hydrate & Permeability (earth sciences). The author has an hindex of 27, co-authored 131 publications receiving 1976 citations. Previous affiliations of Hugh Daigle include Rice University & Chevron Corporation.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a method for combining NMR and MICP data that is based on percolation theory and the relationship between bond occupation probability and the probability that a bond is part of a percolating cluster is presented.
Abstract: Nuclear magnetic resonance (NMR) relaxation time distributions are frequently combined with mercury intrusion capillary pressure (MICP) measurements to allow determination of pore or pore throat size distributions directly from the NMR data. The combination of these two measurements offers an advantage over high-resolution imaging techniques in terms of cost and measurement time, and can provide estimates of pore sizes for pores below imaging resolution. However, the methods that are typically employed to combine NMR and MICP measurements do not necessarily honor the way in which the two different measurements respond to the size distribution and connectivity of the pore system. We present a method for combining NMR and MICP data that is based on percolation theory and the relationship between bond occupation probability and the probability that a bond is part of a percolating cluster. The method yields results that compare very well with pore sizes measured by high-resolution microtomography, and provides particular improvement in media with broad pore size distributions and large percolation thresholds.

123 citations

Journal ArticleDOI
TL;DR: The authors have formulated a method to calculate the uncertainty (confidence interval) of ROP predictions, which can be useful in engineering based drilling decisions and provide a better fit than traditional models.

115 citations

Journal ArticleDOI
TL;DR: In this article, the authors combine NMR transverse relaxation time data and gamma ray data to estimate lithology-dependent permeability in silt-and clay-rich sediments.

102 citations

Journal ArticleDOI
TL;DR: In this article, the effect of internal magnetic field gradients was most pronounced in rocks with larger pores and a high magnetic susceptibility contrast between the pore fluid and mineral grains, and quantified this behavior in terms of pore size and Carr-Purcell-Meiboom-Gill (CPMG) half-echo spacing through scaling arguments.
Abstract: Pore size distributions in rocks may be represented by fractal scaling, and fractal descriptions of pore systems may be used for prediction of petrophysical properties such as permeability, tortuosity, diffusivity, and electrical conductivity. Transverse relaxation time (T2) distributions determined by nuclear magnetic resonance (NMR) measurements may be used to determine the fractal scaling of the pore system, but the analysis is complicated when internal magnetic field gradients at the pore scale are sufficiently large. Through computations in ideal porous media and laboratory measurements of glass beads and sediment samples, we found that the effect of internal magnetic field gradients was most pronounced in rocks with larger pores and a high magnetic susceptibility contrast between the pore fluid and mineral grains. We quantified this behavior in terms of pore size and Carr-Purcell-Meiboom-Gill (CPMG) half-echo spacing through scaling arguments. We additionally found that the effects of intern...

95 citations

Journal ArticleDOI
TL;DR: In this paper, the authors measured NMR relaxation times on samples from Integrated Ocean Drilling Program Expedition 333 Sites C0011, C0012, and C0018 and compared their results to permeability, grain size and specific surface measurements, pore size distributions from mercury injection capillary pressure, and mineralogy from X-ray fluorescence.
Abstract: We measured nuclear magnetic resonance (NMR) relaxation times on samples from Integrated Ocean Drilling Program Expedition 333 Sites C0011, C0012, and C0018. We compared our results to permeability, grain size, and specific surface measurements, pore size distributions from mercury injection capillary pressure, and mineralogy from X-ray fluorescence. We found that permeability could be predicted from NMR measurements by including grain size and specific surface to quantify pore networks and that grain size is the most important factor in relating NMR response to permeability. Samples within zones of anomalously high porosity from Sites C0011 and C0012 were found to have different NMR-permeability relationships than samples from outside these zones, suggesting that the porosity anomaly is related to a fundamental difference in pore structure. We additionally estimated the size of paramagnetic sites that cause proton relaxation and found that in most of our samples, paramagnetic material is present mainly as discrete, clay-sized grains. This distribution of paramagnetic material may cause pronounced heterogeneity in NMR properties at the pore scale that is not accounted for in most NMR interpretation techniques. Our results provide important insight into the microstructure of marine sediments in the Nankai Trough.

93 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors review various studies on resource potential of natural gas hydrate, the current research progress in laboratory settings, and several recent field trials, and discuss possible limitation in each production method and the challenges to be addressed for large scale production.

1,236 citations

Journal ArticleDOI
TL;DR: The synergy between warming climate and gas hydrate dissociation feeds a popular perception that global warming could drive catastrophic methane releases from the contemporary gas hydrates reservoir as mentioned in this paper, but no conclusive proof that hydrate-derived methane is reaching the atmosphere now, but more observational data and improved numerical models will better characterize the climate-hydrate synergy in the future.
Abstract: Gas hydrate, a frozen, naturally-occurring, and highly-concentrated form of methane, sequesters significant carbon in the global system and is stable only over a range of low-temperature and moderate-pressure conditions. Gas hydrate is widespread in the sediments of marine continental margins and permafrost areas, locations where ocean and atmospheric warming may perturb the hydrate stability field and lead to release of the sequestered methane into the overlying sediments and soils. Methane and methane-derived carbon that escape from sediments and soils and reach the atmosphere could exacerbate greenhouse warming. The synergy between warming climate and gas hydrate dissociation feeds a popular perception that global warming could drive catastrophic methane releases from the contemporary gas hydrate reservoir. Appropriate evaluation of the two sides of the climate-methane hydrate synergy requires assessing direct and indirect observational data related to gas hydrate dissociation phenomena and numerical models that track the interaction of gas hydrates/methane with the ocean and/or atmosphere. Methane hydrate is likely undergoing dissociation now on global upper continental slopes and on continental shelves that ring the Arctic Ocean. Many factors—the depth of the gas hydrates in sediments, strong sediment and water column sinks, and the inability of bubbles emitted at the seafloor to deliver methane to the sea-air interface in most cases—mitigate the impact of gas hydrate dissociation on atmospheric greenhouse gas concentrations though. There is no conclusive proof that hydrate-derived methane is reaching the atmosphere now, but more observational data and improved numerical models will better characterize the climate-hydrate synergy in the future.

514 citations

Journal ArticleDOI
TL;DR: In this paper, the pore size distribution and 3D pore connectivity are evaluated from NMR and XCT analysis, and the NMR spectrum is also linked to the macroscopic performance, and pore network is determined from N 2 GA, and fractal theory is introduced to explain the irregularity and heterogeneity of pore throat structure characteristics.

410 citations

01 Nov 2011
TL;DR: The methodology used in EPA's Waste Reduction Model (WARM) to estimate streamlined life-cycle greenhouse gas (GHG) emission factors for concrete beginning at the point of waste generation is described in this paper.
Abstract: This chapter describes the methodology used in EPA’s Waste Reduction Model (WARM) to estimate streamlined life-cycle greenhouse gas (GHG) emission factors for concrete beginning at the point of waste generation. The WARM GHG emission factors are used to compare the net emissions associated with concrete in the following two waste management alternatives: recycling and landfilling. Exhibit 1 shows the general outline of materials management pathways for concrete in WARM. For background information on the general purpose and function of WARM emission factors, see the Introduction & Overview chapter. For more information on Recycling and Landfilling, see the chapters devoted to these processes. WARM also allows users to calculate results in terms of energy, rather than GHGs. The energy results are calculated using the same methodology described here but with slight adjustments, as explained in the Energy Impacts chapter.

364 citations