scispace - formally typeset
Search or ask a question
Author

Hugh Morrison

Bio: Hugh Morrison is an academic researcher from National Center for Atmospheric Research. The author has contributed to research in topics: Microphysics & Precipitation. The author has an hindex of 57, co-authored 189 publications receiving 13153 citations. Previous affiliations of Hugh Morrison include University of Colorado Boulder & University of New South Wales.


Papers
More filters
Journal ArticleDOI
TL;DR: A two-moment cloud microphysics scheme predicting the mixing ratios and number concentrations of five species (i.e., cloud droplets, cloud ice, snow, rain, and graupel) has been implemented into the Weather Research and Forecasting model (WRF) as discussed by the authors.
Abstract: A new two-moment cloud microphysics scheme predicting the mixing ratios and number concentrations of five species (i.e., cloud droplets, cloud ice, snow, rain, and graupel) has been implemented into the Weather Research and Forecasting model (WRF). This scheme is used to investigate the formation and evolution of trailing stratiform precipitation in an idealized two-dimensional squall line. Results are compared to those using a one-moment version of the scheme that predicts only the mixing ratios of the species, and diagnoses the number concentrations from the specified size distribution intercept parameter and predicted mixing ratio. The overall structure of the storm is similar using either the one- or two-moment schemes, although there are notable differences. The two-moment (2-M) scheme produces a widespread region of trailing stratiform precipitation within several hours of the storm formation. In contrast, there is negligible trailing stratiform precipitation using the one-moment (1-M) scheme. The primary reason for this difference are reduced rain evaporation rates in 2-M compared to 1-M in the trailing stratiform region, leading directly to greater rain mixing ratios and surface rainfall rates. Second, increased rain evaporation rates in 2-M compared to 1-M in the convective region at midlevels result in weaker convective updraft cells and increased midlevel detrainment and flux of positively buoyant air from the convective into the stratiform region. This flux is in turn associated with a stronger mesoscale updraft in the stratiform region and enhanced ice growth rates. The reduced (increased) rates of rain evaporation in the stratiform (convective) regions in 2-M are associated with differences in the predicted rain size distribution intercept parameter (which was specified as a constant in 1-M) between the two regions. This variability is consistent with surface disdrometer measurements in previous studies that show a rapid decrease of the rain intercept parameter during the transition from convective to stratiform rainfall.

1,672 citations

Journal ArticleDOI
TL;DR: In this article, a two-moment stratiform cloud microphysics scheme in a general circulation model is described, which treats several microphysical processes, including hydrometeor collection, condensation/ evaporation, freezing, melting, and sedimentation.
Abstract: A new two-moment stratiform cloud microphysics scheme in a general circulation model is described. Prognostic variables include cloud droplet and cloud ice mass mixing ratios and number concentrations. The scheme treats several microphysical processes, including hydrometeor collection, condensation/ evaporation, freezing, melting, and sedimentation. The activation of droplets on aerosol is physically based and coupled to a subgrid vertical velocity. Unique aspects of the scheme, relative to existing two-moment schemes developed for general circulation models, are the diagnostic treatment of rain and snow number concentration and mixing ratio and the explicit treatment of subgrid cloud water variability for calculation of the microphysical process rates. Numerical aspects of the scheme are described in detail using idealized one-dimensional offline tests of the microphysics. Sensitivity of the scheme to time step, vertical resolution, and numerical method for diagnostic precipitation is investigated over a range of conditions. It is found that, in general, two substeps are required for numerical stability and reasonably small time truncation errors using a time step of 20 min; however, substepping is only required for the precipitation microphysical processes rather than the entire scheme. A new numerical approach for the diagnostic rain and snow produces reasonable results compared to a benchmark simulation, especially at low vertical resolution. Part II of this study details results of the scheme in single-column and global simulations, including comparison with observations.

945 citations

Journal ArticleDOI
TL;DR: In this paper, a double-moment bulk microphysics scheme predicting the number concentrations and mixing ratios of four hydrometeor species (droplets, cloud ice, rain, snow) is described.
Abstract: A new double-moment bulk microphysics scheme predicting the number concentrations and mixing ratios of four hydrometeor species (droplets, cloud ice, rain, snow) is described. New physically based parameterizations are developed for simulating homogeneous and heterogeneous ice nucleation, droplet activation, and the spectral index (width) of the droplet size spectra. Two versions of the scheme are described: one for application in high-resolution cloud models and the other for simulating grid-scale cloudiness in larger-scale models. The versions differ in their treatment of the supersaturation field and droplet nucleation. For the high-resolution approach, droplet nucleation is calculated from Kohler theory applied to a distribution of aerosol that activates at a given supersaturation. The resolved supersaturation field and condensation/deposition rates are predicted using a semianalytic approximation to the three-phase (vapor, ice, liquid) supersaturation equation. For the large-scale version of the scheme, it is assumed that the supersaturation field is not resolved and thus droplet activation is parameterized as a function of the vertical velocity and diabatic cooling rate. The vertical velocity includes a subgrid component that is parameterized in terms of the eddy diffusivity and mixing length. Droplet condensation is calculated using a quasi-steady, saturation adjustment approach. Evaporation/deposition onto the other water species is given by nonsteady vapor diffusion allowing excess vapor density relative to ice saturation.

913 citations

Journal ArticleDOI
TL;DR: In this article, a modal aerosol module (MAM) has been developed for the Community Atmosphere Model version 5 (CAM5), the atmospheric component of the Community Earth System Model version 1 (CESM1).
Abstract: . A modal aerosol module (MAM) has been developed for the Community Atmosphere Model version 5 (CAM5), the atmospheric component of the Community Earth System Model version 1 (CESM1). MAM is capable of simulating the aerosol size distribution and both internal and external mixing between aerosol components, treating numerous complicated aerosol processes and aerosol physical, chemical and optical properties in a physically-based manner. Two MAM versions were developed: a more complete version with seven lognormal modes (MAM7), and a version with three lognormal modes (MAM3) for the purpose of long-term (decades to centuries) simulations. In this paper a description and evaluation of the aerosol module and its two representations are provided. Sensitivity of the aerosol lifecycle to simplifications in the representation of aerosol is discussed. Simulated sulfate and secondary organic aerosol (SOA) mass concentrations are remarkably similar between MAM3 and MAM7. Differences in primary organic matter (POM) and black carbon (BC) concentrations between MAM3 and MAM7 are also small (mostly within 10%). The mineral dust global burden differs by 10% and sea salt burden by 30–40% between MAM3 and MAM7, mainly due to the different size ranges for dust and sea salt modes and different standard deviations of the log-normal size distribution for sea salt modes between MAM3 and MAM7. The model is able to qualitatively capture the observed geographical and temporal variations of aerosol mass and number concentrations, size distributions, and aerosol optical properties. However, there are noticeable biases; e.g., simulated BC concentrations are significantly lower than measurements in the Arctic. There is a low bias in modeled aerosol optical depth on the global scale, especially in the developing countries. These biases in aerosol simulations clearly indicate the need for improvements of aerosol processes (e.g., emission fluxes of anthropogenic aerosols and precursor gases in developing countries, boundary layer nucleation) and properties (e.g., primary aerosol emission size, POM hygroscopicity). In addition, the critical role of cloud properties (e.g., liquid water content, cloud fraction) responsible for the wet scavenging of aerosol is highlighted.

773 citations

Journal ArticleDOI
TL;DR: In this article, the authors suggest that shifts in the large-scale environment could alter the prevalence of mixed-phase clouds, potentially affecting surface radiative fluxes and the Arctic energy budget.
Abstract: Mixed-phase clouds, comprising both ice and supercooled liquid water, have a large impact on radiative fluxes in the Arctic. Interactions between numerous local feedbacks sustain these complex cloud systems, leading to the development of a resilient mixed-phase cloud system. The Arctic region is particularly sensitive to climate change. Mixed-phase clouds, comprising both ice and supercooled liquid water, have a large impact on radiative fluxes in the Arctic. These clouds occur frequently during all seasons in the region, where they often persist for many days at a time. This persistence is remarkable given the inherent instability of ice–liquid mixtures. In recent years it has emerged that feedbacks between numerous local processes, including the formation and growth of ice and cloud droplets, radiative cooling, turbulence, entrainment and surface fluxes of heat and moisture, interact to create a resilient mixed-phase cloud system. As well as the persistent mixed-phase cloud state there is another distinct Arctic state, characterized by radiatively clear conditions. The occurrence of either state seems to be related, in part, to large-scale environmental conditions. We suggest that shifts in the large-scale environment could alter the prevalence of mixed-phase clouds, potentially affecting surface radiative fluxes and the Arctic energy budget.

508 citations


Cited by
More filters
DOI
01 Jan 2008
TL;DR: The Technical Note series provides an outlet for a variety of NCAR manuscripts that contribute in specialized ways to the body of scientific knowledge but which are not suitable for journal, monograph, or book publication.
Abstract: The Technical Note series provides an outlet for a variety of NCAR manuscripts that contribute in specialized ways to the body of scientific knowledge but which are not suitable for journal, monograph, or book publication. Reports in this series are issued by the NCAR Scientific Divisions ; copies may be obtained on request from the Publications Office of NCAR. Designation symbols for the series include: Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the National Science Foundation.

9,022 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provided an assessment of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice.
Abstract: Black carbon aerosol plays a unique and important role in Earth's climate system. Black carbon is a type of carbonaceous material with a unique combination of physical properties. This assessment provides an evaluation of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice. These effects are calculated with climate models, but when possible, they are evaluated with both microphysical measurements and field observations. Predominant sources are combustion related, namely, fossil fuels for transportation, solid fuels for industrial and residential uses, and open burning of biomass. Total global emissions of black carbon using bottom-up inventory methods are 7500 Gg yr−1 in the year 2000 with an uncertainty range of 2000 to 29000. However, global atmospheric absorption attributable to black carbon is too low in many models and should be increased by a factor of almost 3. After this scaling, the best estimate for the industrial-era (1750 to 2005) direct radiative forcing of atmospheric black carbon is +0.71 W m−2 with 90% uncertainty bounds of (+0.08, +1.27) W m−2. Total direct forcing by all black carbon sources, without subtracting the preindustrial background, is estimated as +0.88 (+0.17, +1.48) W m−2. Direct radiative forcing alone does not capture important rapid adjustment mechanisms. A framework is described and used for quantifying climate forcings, including rapid adjustments. The best estimate of industrial-era climate forcing of black carbon through all forcing mechanisms, including clouds and cryosphere forcing, is +1.1 W m−2 with 90% uncertainty bounds of +0.17 to +2.1 W m−2. Thus, there is a very high probability that black carbon emissions, independent of co-emitted species, have a positive forcing and warm the climate. We estimate that black carbon, with a total climate forcing of +1.1 W m−2, is the second most important human emission in terms of its climate forcing in the present-day atmosphere; only carbon dioxide is estimated to have a greater forcing. Sources that emit black carbon also emit other short-lived species that may either cool or warm climate. Climate forcings from co-emitted species are estimated and used in the framework described herein. When the principal effects of short-lived co-emissions, including cooling agents such as sulfur dioxide, are included in net forcing, energy-related sources (fossil fuel and biofuel) have an industrial-era climate forcing of +0.22 (−0.50 to +1.08) W m−2 during the first year after emission. For a few of these sources, such as diesel engines and possibly residential biofuels, warming is strong enough that eliminating all short-lived emissions from these sources would reduce net climate forcing (i.e., produce cooling). When open burning emissions, which emit high levels of organic matter, are included in the total, the best estimate of net industrial-era climate forcing by all short-lived species from black-carbon-rich sources becomes slightly negative (−0.06 W m−2 with 90% uncertainty bounds of −1.45 to +1.29 W m−2). The uncertainties in net climate forcing from black-carbon-rich sources are substantial, largely due to lack of knowledge about cloud interactions with both black carbon and co-emitted organic carbon. In prioritizing potential black-carbon mitigation actions, non-science factors, such as technical feasibility, costs, policy design, and implementation feasibility play important roles. The major sources of black carbon are presently in different stages with regard to the feasibility for near-term mitigation. This assessment, by evaluating the large number and complexity of the associated physical and radiative processes in black-carbon climate forcing, sets a baseline from which to improve future climate forcing estimates.

4,591 citations

Journal Article
TL;DR: In this article, the authors present a document, redatto, voted and pubblicato by the Ipcc -Comitato intergovernativo sui cambiamenti climatici - illustra la sintesi delle ricerche svolte su questo tema rilevante.
Abstract: Cause, conseguenze e strategie di mitigazione Proponiamo il primo di una serie di articoli in cui affronteremo l’attuale problema dei mutamenti climatici. Presentiamo il documento redatto, votato e pubblicato dall’Ipcc - Comitato intergovernativo sui cambiamenti climatici - che illustra la sintesi delle ricerche svolte su questo tema rilevante.

4,187 citations

01 Jan 1989
TL;DR: In this article, a two-dimensional version of the Pennsylvania State University mesoscale model has been applied to Winter Monsoon Experiment data in order to simulate the diurnally occurring convection observed over the South China Sea.
Abstract: Abstract A two-dimensional version of the Pennsylvania State University mesoscale model has been applied to Winter Monsoon Experiment data in order to simulate the diurnally occurring convection observed over the South China Sea. The domain includes a representation of part of Borneo as well as the sea so that the model can simulate the initiation of convection. Also included in the model are parameterizations of mesoscale ice phase and moisture processes and longwave and shortwave radiation with a diurnal cycle. This allows use of the model to test the relative importance of various heating mechanisms to the stratiform cloud deck, which typically occupies several hundred kilometers of the domain. Frank and Cohen's cumulus parameterization scheme is employed to represent vital unresolved vertical transports in the convective area. The major conclusions are: Ice phase processes are important in determining the level of maximum large-scale heating and vertical motion because there is a strong anvil componen...

3,813 citations

Journal ArticleDOI
10 Dec 2014-PLOS ONE
TL;DR: The total number of plastic particles and their weight floating in the world's oceans is estimated from 24 expeditions across all five sub-tropical gyres, costal Australia, Bay of Bengal and the Mediterranean Sea conducting surface net tows and visual survey transects of large plastic debris.
Abstract: Plastic pollution is ubiquitous throughout the marine environment, yet estimates of the global abundance and weight of floating plastics have lacked data, particularly from the Southern Hemisphere and remote regions. Here we report an estimate of the total number of plastic particles and their weight floating in the world’s oceans from 24 expeditions (2007–2013) across all five sub-tropical gyres, costal Australia, Bay of Bengal and the Mediterranean Sea conducting surface net tows (N5680) and visual survey transects of large plastic debris (N5891). Using an oceanographic model of floating debris dispersal calibrated by our data, and correcting for wind-driven vertical mixing, we estimate a minimum of 5.25 trillion particles weighing 268,940 tons. When comparing between four size classes, two microplastic ,4.75 mm and meso- and macroplastic .4.75 mm, a tremendous loss of microplastics is observed from the sea surface compared to expected rates of fragmentation, suggesting there are mechanisms at play that remove ,4.75 mm plastic particles from the ocean surface.

3,091 citations