scispace - formally typeset
Search or ask a question
Author

Hugo D. Critchley

Bio: Hugo D. Critchley is an academic researcher from Brighton and Sussex Medical School. The author has contributed to research in topics: Arousal & Cognition. The author has an hindex of 90, co-authored 354 publications receiving 35610 citations. Previous affiliations of Hugo D. Critchley include Wellcome Trust Centre for Neuroimaging & National Health Service.


Papers
More filters
Journal ArticleDOI
TL;DR: In right anterior insular/opercular cortex, neural activity predicted subjects' accuracy in the heartbeat detection task and local gray matter volume correlated with both interoceptive accuracy and subjective ratings of visceral awareness.
Abstract: Influential theories of human emotion argue that subjective feeling states involve representation of bodily responses elicited by emotional events. Within this framework, individual differences in intensity of emotional experience reflect variation in sensitivity to internal bodily responses. We measured regional brain activity by functional magnetic resonance imaging (fMRI) during an interoceptive task wherein subjects judged the timing of their own heartbeats. We observed enhanced activity in insula, somatomotor and cingulate cortices. In right anterior insular/opercular cortex, neural activity predicted subjects' accuracy in the heartbeat detection task. Furthermore, local gray matter volume in the same region correlated with both interoceptive accuracy and subjective ratings of visceral awareness. Indices of negative emotional experience correlated with interoceptive accuracy across subjects. These findings indicate that right anterior insula supports a representation of visceral responses accessible to awareness, providing a substrate for subjective feeling states.

2,972 citations

Journal ArticleDOI
24 Apr 2003-Neuron
TL;DR: Regression analyses revealed that responses in ventral striatum and orbitofrontal cortex were significantly correlated with this prediction error signal, suggesting that, during appetitive conditioning, computations described by temporal difference learning are expressed in the human brain.

1,433 citations

Journal ArticleDOI
TL;DR: A unifying model in which insula cortex supports different levels of representation of current and predictive states allowing for error-based learning of both feeling states and uncertainty is proposed.

1,156 citations

Journal ArticleDOI
TL;DR: It is hypothesized that the neural substrate for these processes during motivational and affective behavior lies within the interactions of anterior cingulate, insula, and orbitofrontal cortices.
Abstract: Influential theoretical models propose a central role for afferent information from the body in the expression of emotional feeling states. Feedback representations of changing states of bodily arousal influence learning and facilitate concurrent and prospective decision-making. Functional neuroimaging studies have increased understanding of brain mechanisms that generate changes in autonomic arousal during behavior and those which respond to internal feedback signals to influence subjective feeling states. In particular, anterior cingulate cortex is implicated in generating autonomic changes, while insula and orbitofrontal cortices may be specialized in mapping visceral responses. Independently, ventromedial prefrontal cortex is recognized to support processes of internal (self-) reference that predominate in states of rest and disengagement and which putatively serve as a benchmark for dynamic interactions with the environment. Lesion data further highlight the integrated role of these cortical regions in autonomic and motivational control. In computational models of control, forward (efference copies) and inverse models are proposed to enable prediction and correction of action and, by extension, the interpretation of the behavior of others. It is hypothesized that the neural substrate for these processes during motivational and affective behavior lies within the interactions of anterior cingulate, insula, and orbitofrontal cortices. Generation of visceral autonomic correlates of control reinforce experiential engagement in simulatory models and underpin concepts such as somatic markers to bridge the dualistic divide. Influential theoretical models propose a central role for afferent information from the body in the expression of emotional feeling states. Feedback representations of changing states of bodily arousal influence learning and facilitate concurrent and prospective decision-making. Functional neuroimaging studies have increased understanding of brain mechanisms that generate changes in autonomic arousal during behavior and those which respond to internal feedback signals to influence subjective feeling states. In particular, anterior cingulate cortex is implicated in generating autonomic changes, while insula and orbitofrontal cortices may be specialized in mapping visceral responses. Independently, ventromedial prefrontal cortex is recognized to support processes of internal (self-) reference that predominate in states of rest and disengagement and which putatively serve as a benchmark for dynamic interactions with the environment. Lesion data further highlight the integrated role of these cortical regions in autonomic and motivational control. In computational models of control, forward (efference copies) and inverse models are proposed to enable prediction and correction of action and, by extension, the interpretation of the behavior of others. It is hypothesized that the neural substrate for these processes during motivational and affective behavior lies within the interactions of anterior cingulate, insula, and orbitofrontal cortices. Generation of visceral autonomic correlates of control reinforce experiential engagement in simulatory models and underpin concepts such as somatic markers to bridge the dualistic divide.

1,142 citations

Journal ArticleDOI
01 Oct 2003-Brain
TL;DR: Converging neuroimaging and clinical findings suggest that ACC function mediates context-driven modulation of bodily arousal states during effortful cognitive and motor behaviour.
Abstract: Human anterior cingulate function has been explained primarily within a cognitive framework. We used functional MRI experiments with simultaneous electrocardiography to examine regional brain activity associated with autonomic cardiovascular control during performance of cognitive and motor tasks. Using indices of heart rate variability, and high- and low-frequency power in the cardiac rhythm, we observed activity in the dorsal anterior cingulate cortex (ACC) related to sympathetic modulation of heart rate that was dissociable from cognitive and motor-related activity. The findings predict that during effortful cognitive and motor behaviour the dorsal ACC supports the generation of associated autonomic states of cardiovascular arousal. We subsequently tested this prediction by studying three patients with focal damage involving the ACC while they performed effortful cognitive and motor tests. Each showed abnormalities in autonomic cardiovascular responses with blunted autonomic arousal to mental stress when compared with 147 normal subjects tested in identical fashion. Thus, converging neuroimaging and clinical findings suggest that ACC function mediates context-driven modulation of bodily arousal states.

1,135 citations


Cited by
More filters
Book
01 Jan 1988
TL;DR: This book provides a clear and simple account of the key ideas and algorithms of reinforcement learning, which ranges from the history of the field's intellectual foundations to the most recent developments and applications.
Abstract: Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability. The book is divided into three parts. Part I defines the reinforcement learning problem in terms of Markov decision processes. Part II provides basic solution methods: dynamic programming, Monte Carlo methods, and temporal-difference learning. Part III presents a unified view of the solution methods and incorporates artificial neural networks, eligibility traces, and planning; the two final chapters present case studies and consider the future of reinforcement learning.

37,989 citations

Journal ArticleDOI
TL;DR: Two distinct networks typically coactivated during functional MRI tasks are identified, anchored by dorsal anterior cingulate and orbital frontoinsular cortices with robust connectivity to subcortical and limbic structures, and an “executive-control network” that links dorsolateral frontal and parietal neocortices.
Abstract: Variations in neural circuitry, inherited or acquired, may underlie important individual differences in thought, feeling, and action patterns. Here, we used task-free connectivity analyses to isolate and characterize two distinct networks typically coactivated during functional MRI tasks. We identified a "salience network," anchored by dorsal anterior cingulate (dACC) and orbital frontoinsular cortices with robust connectivity to subcortical and limbic structures, and an "executive-control network" that links dorsolateral frontal and parietal neocortices. These intrinsic connectivity networks showed dissociable correlations with functions measured outside the scanner. Prescan anxiety ratings correlated with intrinsic functional connectivity of the dACC node of the salience network, but with no region in the executive-control network, whereas executive task performance correlated with lateral parietal nodes of the executive-control network, but with no region in the salience network. Our findings suggest that task-free analysis of intrinsic connectivity networks may help elucidate the neural architectures that support fundamental aspects of human behavior.

6,049 citations

Journal ArticleDOI
TL;DR: New findings suggest a fundamental role for the AIC (and the von Economo neurons it contains) in awareness, and thus it needs to be considered as a potential neural correlate of consciousness.
Abstract: The anterior insular cortex (AIC) is implicated in a wide range of conditions and behaviours, from bowel distension and orgasm, to cigarette craving and maternal love, to decision making and sudden insight. Its function in the re-representation of interoception offers one possible basis for its involvement in all subjective feelings. New findings suggest a fundamental role for the AIC (and the von Economo neurons it contains) in awareness, and thus it needs to be considered as a potential neural correlate of consciousness.

5,279 citations

Journal ArticleDOI
TL;DR: Functional anatomical work has detailed an afferent neural system in primates and in humans that represents all aspects of the physiological condition of the physical body that might provide a foundation for subjective feelings, emotion and self-awareness.
Abstract: As humans, we perceive feelings from our bodies that relate our state of well-being, our energy and stress levels, our mood and disposition. How do we have these feelings? What neural processes do they represent? Recent functional anatomical work has detailed an afferent neural system in primates and in humans that represents all aspects of the physiological condition of the physical body. This system constitutes a representation of 'the material me', and might provide a foundation for subjective feelings, emotion and self-awareness.

4,673 citations