scispace - formally typeset
Search or ask a question
Author

Hui Kong

Bio: Hui Kong is an academic researcher from Nanjing University of Science and Technology. The author has contributed to research in topics: Computer science & Image segmentation. The author has an hindex of 23, co-authored 72 publications receiving 2579 citations. Previous affiliations of Hui Kong include Massachusetts Institute of Technology & Ohio State University.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper decomposes the road detection process into two steps: the estimation of the vanishing point associated with the main (straight) part of the road, followed by the segmentation of the corresponding road area based upon the detected vanishing point.
Abstract: Given a single image of an arbitrary road, that may not be well-paved, or have clearly delineated edges, or some a priori known color or texture distribution, is it possible for a computer to find this road? This paper addresses this question by decomposing the road detection process into two steps: the estimation of the vanishing point associated with the main (straight) part of the road, followed by the segmentation of the corresponding road area based upon the detected vanishing point. The main technical contributions of the proposed approach are a novel adaptive soft voting scheme based upon a local voting region using high-confidence voters, whose texture orientations are computed using Gabor filters, and a new vanishing-point-constrained edge detection technique for detecting road boundaries. The proposed method has been implemented, and experiments with 1003 general road images demonstrate that it is effective at detecting road regions in challenging conditions.

401 citations

Proceedings ArticleDOI
20 Jun 2009
TL;DR: This paper decomposes the road detection process into two steps: the estimation of the vanishing point associated with the main (straight) part of the road, followed by the segmentation of the corresponding road area based on the detected vanishing point.
Abstract: Given a single image of an arbitrary road, that may not be well-paved, or have clearly delineated edges, or some a priori known color or texture distribution, is it possible for a computer to find this road? This paper addresses this question by decomposing the road detection process into two steps: the estimation of the vanishing point associated with the main (straight) part of the road, followed by the segmentation of the corresponding road area based on the detected vanishing point. The main technical contributions of the proposed approach are a novel adaptive soft voting scheme based on variable-sized voting region using confidence-weighted Gabor filters, which compute the dominant texture orientation at each pixel, and a new vanishing-point-constrained edge detection technique for detecting road boundaries. The proposed method has been implemented, and experiments with 1003 general road images demonstrate that it is both computationally efficient and effective at detecting road regions in challenging conditions.

268 citations

Journal ArticleDOI
TL;DR: The proposed gLoG-based blob detector can accurately detect the centers and estimate the sizes and orientations of cell nuclei, and can produce promising estimation of texture orientations, achieving an accurate texture-based road vanishing point detection method.
Abstract: In this paper, we propose a generalized Laplacian of Gaussian (LoG) (gLoG) filter for detecting general elliptical blob structures in images. The gLoG filter can not only accurately locate the blob centers but also estimate the scales, shapes, and orientations of the detected blobs. These functions can be realized by generalizing the common 3-D LoG scale-space blob detector to a 5-D gLoG scale-space one, where the five parameters are image-domain coordinates (x, y), scales (σx, σy), and orientation (θ), respectively. Instead of searching the local extrema of the image's 5-D gLoG scale space for locating blobs, a more feasible solution is given by locating the local maxima of an intermediate map, which is obtained by aggregating the log-scale-normalized convolution responses of each individual gLoG filter. The proposed gLoG-based blob detector is applied to both biomedical images and natural ones such as general road-scene images. For the biomedical applications on pathological and fluorescent microscopic images, the gLoG blob detector can accurately detect the centers and estimate the sizes and orientations of cell nuclei. These centers are utilized as markers for a watershed-based touching-cell splitting method to split touching nuclei and counting cells in segmentation-free images. For the application on road images, the proposed detector can produce promising estimation of texture orientations, achieving an accurate texture-based road vanishing point detection method. The implementation of our method is quite straightforward due to a very small number of tunable parameters.

254 citations

Journal ArticleDOI
TL;DR: An integrated framework consisting of a novel supervised cell-image segmentation algorithm and a new touching-cell splitting method for quantitative analysis of histopathological images, which achieves better results than the other compared methods.
Abstract: For quantitative analysis of histopathological images, such as the lymphoma grading systems, quantification of features is usually carried out on single cells before categorizing them by classification algorithms. To this end, we propose an integrated framework consisting of a novel supervised cell-image segmentation algorithm and a new touching-cell splitting method. For the segmentation part, we segment the cell regions from the other areas by classifying the image pixels into either cell or extra-cellular category. Instead of using pixel color intensities, the color-texture extracted at the local neighborhood of each pixel is utilized as the input to our classification algorithm. The color-texture at each pixel is extracted by local Fourier transform (LFT) from a new color space, the most discriminant color space (MDC). The MDC color space is optimized to be a linear combination of the original RGB color space so that the extracted LFT texture features in the MDC color space can achieve most discrimination in terms of classification (segmentation) performance. To speed up the texture feature extraction process, we develop an efficient LFT extraction algorithm based on image shifting and image integral. For the splitting part, given a connected component of the segmentation map, we initially differentiate whether it is a touching-cell clump or a single nontouching cell. The differentiation is mainly based on the distance between the most likely radial-symmetry center and the geometrical center of the connected component. The boundaries of touching-cell clumps are smoothed out by Fourier shape descriptor before carrying out an iterative, concave-point and radial-symmetry based splitting algorithm. To test the validity, effectiveness and efficiency of the framework, it is applied to follicular lymphoma pathological images, which exhibit complex background and extracellular texture with nonuniform illumination condition. For comparison purposes, the results of the proposed segmentation algorithm are evaluated against the outputs of superpixel, graph-cut, mean-shift, and two state-of-the-art pathological image segmentation methods using ground-truth that was established by manual segmentation of cells in the original images. Our segmentation algorithm achieves better results than the other compared methods. The results of splitting are evaluated in terms of under-splitting, over-splitting, and encroachment errors. By summing up the three types of errors, we achieve a total error rate of 5.25% per image.

212 citations

Journal ArticleDOI
TL;DR: A graph-cut-based detection approach is given to accurately extract a specified road region during the initialization stage and in the middle of tracking process, and a fast homography-based road-tracking scheme is developed to automatically track road areas.
Abstract: An unmanned aerial vehicle (UAV) has many applications in a variety of fields. Detection and tracking of a specific road in UAV videos play an important role in automatic UAV navigation, traffic monitoring, and ground–vehicle tracking, and also is very helpful for constructing road networks for modeling and simulation. In this paper, an efficient road detection and tracking framework in UAV videos is proposed. In particular, a graph-cut–based detection approach is given to accurately extract a specified road region during the initialization stage and in the middle of tracking process, and a fast homography-based road-tracking scheme is developed to automatically track road areas. The high efficiency of our framework is attributed to two aspects: the road detection is performed only when it is necessary and most work in locating the road is rapidly done via very fast homography-based tracking. Experiments are conducted on UAV videos of real road scenes we captured and downloaded from the Internet. The promising results indicate the effectiveness of our proposed framework, with the precision of 98.4% and processing 34 frames per second for 1046 $\times$ 595 videos on average.

198 citations


Cited by
More filters
01 Jan 2004
TL;DR: Comprehensive and up-to-date, this book includes essential topics that either reflect practical significance or are of theoretical importance and describes numerous important application areas such as image based rendering and digital libraries.
Abstract: From the Publisher: The accessible presentation of this book gives both a general view of the entire computer vision enterprise and also offers sufficient detail to be able to build useful applications. Users learn techniques that have proven to be useful by first-hand experience and a wide range of mathematical methods. A CD-ROM with every copy of the text contains source code for programming practice, color images, and illustrative movies. Comprehensive and up-to-date, this book includes essential topics that either reflect practical significance or are of theoretical importance. Topics are discussed in substantial and increasing depth. Application surveys describe numerous important application areas such as image based rendering and digital libraries. Many important algorithms broken down and illustrated in pseudo code. Appropriate for use by engineers as a comprehensive reference to the computer vision enterprise.

3,627 citations

Proceedings Article
01 Jan 1989
TL;DR: A scheme is developed for classifying the types of motion perceived by a humanlike robot and equations, theorems, concepts, clues, etc., relating the objects, their positions, and their motion to their images on the focal plane are presented.
Abstract: A scheme is developed for classifying the types of motion perceived by a humanlike robot. It is assumed that the robot receives visual images of the scene using a perspective system model. Equations, theorems, concepts, clues, etc., relating the objects, their positions, and their motion to their images on the focal plane are presented. >

2,000 citations

Journal ArticleDOI
TL;DR: A way forward is suggested for the effective targeting of autophagy by understanding the context-dependent roles of autophile and by capitalizing on modern approaches to clinical trial design.
Abstract: Autophagy is a mechanism by which cellular material is delivered to lysosomes for degradation, leading to the basal turnover of cell components and providing energy and macromolecular precursors. Autophagy has opposing, context-dependent roles in cancer, and interventions to both stimulate and inhibit autophagy have been proposed as cancer therapies. This has led to the therapeutic targeting of autophagy in cancer to be sometimes viewed as controversial. In this Review, we suggest a way forwards for the effective targeting of autophagy by understanding the context-dependent roles of autophagy and by capitalizing on modern approaches to clinical trial design.

1,606 citations

Proceedings ArticleDOI
18 Jun 2018
TL;DR: In this article, the authors propose a taxonomic map for task transfer learning, which is a set of tools for computing and probing this taxonomical structure including a solver to find supervision policies for their use cases.
Abstract: Do visual tasks have a relationship, or are they unrelated? For instance, could having surface normals simplify estimating the depth of an image? Intuition answers these questions positively, implying existence of a structure among visual tasks. Knowing this structure has notable values; it is the concept underlying transfer learning and provides a principled way for identifying redundancies across tasks, e.g., to seamlessly reuse supervision among related tasks or solve many tasks in one system without piling up the complexity. We proposes a fully computational approach for modeling the structure of space of visual tasks. This is done via finding (first and higher-order) transfer learning dependencies across a dictionary of twenty six 2D, 2.5D, 3D, and semantic tasks in a latent space. The product is a computational taxonomic map for task transfer learning. We study the consequences of this structure, e.g. nontrivial emerged relationships, and exploit them to reduce the demand for labeled data. We provide a set of tools for computing and probing this taxonomical structure including a solver users can employ to find supervision policies for their use cases.

971 citations

Journal ArticleDOI
TL;DR: Understanding the novel function of autophagy may allow us to develop a promising therapeutic strategy to enhance the effects of chemotherapy and improve clinical outcomes in the treatment of cancer patients.
Abstract: Induction of cell death and inhibition of cell survival are the main principles of cancer therapy. Resistance to chemotherapeutic agents is a major problem in oncology, which limits the effectiveness of anticancer drugs. A variety of factors contribute to drug resistance, including host factors, specific genetic or epigenetic alterations in the cancer cells and so on. Although various mechanisms by which cancer cells become resistant to anticancer drugs in the microenvironment have been well elucidated, how to circumvent this resistance to improve anticancer efficacy remains to be defined. Autophagy, an important homeostatic cellular recycling mechanism, is now emerging as a crucial player in response to metabolic and therapeutic stresses, which attempts to maintain/restore metabolic homeostasis through the catabolic lysis of excessive or unnecessary proteins and injured or aged organelles. Recently, several studies have shown that autophagy constitutes a potential target for cancer therapy and the induction of autophagy in response to therapeutics can be viewed as having a prodeath or a prosurvival role, which contributes to the anticancer efficacy of these drugs as well as drug resistance. Thus, understanding the novel function of autophagy may allow us to develop a promising therapeutic strategy to enhance the effects of chemotherapy and improve clinical outcomes in the treatment of cancer patients.

968 citations