scispace - formally typeset
Search or ask a question
Author

Hui Tian

Other affiliations: Shanghai Jiao Tong University
Bio: Hui Tian is an academic researcher from University of Science and Technology of China. The author has contributed to research in topics: Meiosis & PRDM9. The author has an hindex of 16, co-authored 28 publications receiving 1318 citations. Previous affiliations of Hui Tian include Shanghai Jiao Tong University.

Papers
More filters
Journal ArticleDOI
TL;DR: This is the first demonstration that miRNAs can control reproductive functions resulting in promoting TGF-beta1-induced GC proliferation and ovarian estrogen release.
Abstract: Many members of the TGF-beta superfamily are indicated to play important roles in ovarian follicular development, such as affecting granulosa cell function and oocyte maturation. Abnormalities associated with TGF-beta1 signaling transduction could result in female infertility. MicroRNAs (miRNAs), as small noncoding RNAs, were recently found to regulate gene expression at posttranscriptional levels. However, little is known about the role of miRNAs in TGF-beta-mediated granulosa cell proliferation and granulosa cell function. In this study, the miRNA expression profiling was identified from TGF-beta1-treated mouse preantral granulosa cells (GCs), and three miRNAs were found to be significantly up-regulated and 13 miRNAs were down-regulated. Among up-regulated miRNAs, miR-224 was the second most significantly elevated miRNA. This up-regulation was attenuated by treatment of GCs with SB431542 (an inhibitor of TGFbeta superfamily type I receptors, thus blocking phosphorylation of the downstream effectors Smad2/3), indicating that miR-224 expression was regulated by TGF-beta1/Smads pathway. The ectopic expression of miR-224 can enhance TGF-beta1-induced GC proliferation through targeting Smad4. Inhibition of endogenous miR-224 partially suppressed GC proliferation induced by TGF-beta1. In addition, both miR-224 and TGF-beta1 can promote estradiol release from GC, at least in part, through increasing CYP19A1 mRNA levels. This is the first demonstration that miRNAs can control reproductive functions resulting in promoting TGF-beta1-induced GC proliferation and ovarian estrogen release. Such miRNA-mediated effects could be potentially used for regulation of reproductive processes or for treatment of reproductive disorders.

262 citations

Journal ArticleDOI
TL;DR: This is the first report that the expression of miRNA expression is altered in testicular tissues of patients with NOA, suggesting a role of miRNAs in regulating spermatogenesis in human males.
Abstract: MicroRNAs (miRNAs), a class of small non-coding RNA molecules, are indicated to play essential roles in spermatogenesis However, little is known about the expression patterns or function of miRNAs in human testes involved in infertility In this study, the miRNA expression profiles of testes of patients with non-obstructive azoospermia (NOA) and normal controls were performed by using microarray technologies Altered microRNA expression in NOA patients was found, with 154 differentially down-regulated and 19 up-regulated miRNAs These findings have been confirmed by real-time reverse transcription-polymerase chain reaction (RT-PCR) assays on select miRNAs, including miR-302a, miR-491-3p, miR-520d-3p and miR-383 Several down-regulated miRNA clusters in patients with NOA were identified, such as the oncogenic potential of the mir-17-92 cluster and mir-371,2,3 cluster This is the first report that the expression of miRNAs is altered in testicular tissues of patients with NOA, suggesting a role of miRNAs in regulating spermatogenesis in human males

223 citations

Journal ArticleDOI
TL;DR: It is shown that downregulation of miR-383 was associated with hyperactive proliferation of germ cells in patients with mixed patterns of MA and functions as a negative regulator of proliferation by targeting IRF1, in part, through inactivation of the pRb pathway.
Abstract: Our previous studies have shown that microRNA-383 (miR-383) expression is downregulated in the testes of infertile men with maturation arrest (MA). However, the underlying mechanisms of miR-383 involved in the pathogenesis of MA remain unknown. In this study, we showed that downregulation of miR-383 was associated with hyperactive proliferation of germ cells in patients with mixed patterns of MA. Overexpression of miR-383 in NT2 (testicular embryonal carcinoma) cells resulted in suppression of proliferation, G1-phase arrest and induction of apoptosis, whereas silencing of miR-383 reversed these effects. The effects of miR-383 were mediated through targeting a tumor suppressor, interferon regulatory factor-1 (IRF1), and miR-383 was negatively correlated with IRF1 protein expression in vivo. miR-383 inhibited IRF1 by affecting its mRNA stability, which subsequently reduced the levels of the targets of IRF1, namely cyclin D1, CDK2 and p21. Downregulation of IRF1 or cyclin D1, but not that of CDK2, enhanced miR-383-mediated effects, whereas silencing of p21 partially inhibited the effects of miR-383. Moreover, miR-383 downregulated CDK4 by increasing proteasome-dependent degradation of CDK4, which in turn resulted in an inhibition of phosphorylated retinoblastoma protein (pRb) phosphorylation. These results suggest that miR-383 functions as a negative regulator of proliferation by targeting IRF1, in part, through inactivation of the pRb pathway. Abnormal testicular miR-383 expression may potentiate the connections between male infertility and testicular germ cell tumor.

136 citations

Journal ArticleDOI
TL;DR: The results suggest that miR-383 functions to promote steroidogenesis by targeting RBMS1, at least in part, through inactivation of c-Myc, and SF-1 acts as a positive regulator of miR's processing and function in GC.
Abstract: Our previous studies have shown that microRNA-383 (miR-383) is one of the most down-regulated miRNA in TGF-β1-treated mouse ovarian granulosa cells (GC). However, the roles and mechanisms of miR-383 in GC function during follicular development remain unknown. In this study, we found that miR-383 was mainly expressed in GC and oocytes of mouse ovarian follicles. Overexpression of miR-383 enhanced estradiol release from GC through targeting RNA binding motif, single stranded interacting protein 1 (RBMS1). miR-383 inhibited RBMS1 by affecting its mRNA stability, which subsequently suppressed the level of c-Myc (a downstream target of RBMS1). Forced expression of RBMS1 or c-Myc attenuated miR-383-mediated steroidogenesis-promoting effects. Knockdown of the transcription factor steroidogenic factor-1 (SF-1) significantly suppressed the expression of Sarcoglycan zeta (SGCZ) (miR-383 host gene), primary and mature miR-383 in GC, indicating that miR-383 was transcriptionally regulated by SF-1. Luciferase and chro...

118 citations

Journal ArticleDOI
TL;DR: Meiotic recombination hotspots activated by PRDM9 are associated with the chromosomal axis and synaptonemal complex via their interaction with other proteins, including CDYL, EHMT2, EWSR1, and CXXC1.
Abstract: In mammals, meiotic recombination occurs at 1- to 2-kb genomic regions termed hotspots, whose positions and activities are determined by PRDM9, a DNA-binding histone methyltransferase. We show that the KRAB domain of PRDM9 forms complexes with additional proteins to allow hotspots to proceed into the next phase of recombination. By a combination of yeast-two hybrid assay, in vitro binding, and coimmunoprecipitation from mouse spermatocytes, we identified four proteins that directly interact with PRDM9's KRAB domain, namely CXXC1, EWSR1, EHMT2, and CDYL. These proteins are coexpressed in spermatocytes at the early stages of meiotic prophase I, the limited period when PRDM9 is expressed. We also detected association of PRDM9-bound complexes with the meiotic cohesin REC8 and the synaptonemal complex proteins SYCP3 and SYCP1. Our results suggest a model in which PRDM9-bound hotspot DNA is brought to the chromosomal axis by the action of these proteins, ensuring the proper chromatin and spatial environment for subsequent recombination events.

83 citations


Cited by
More filters
01 Aug 2010
TL;DR: In this paper, the identification of lincRNAs (lincRNA-p21) that serve as a repressor in p53-dependent transcriptional responses was reported, and the observed transcriptional repression was mediated through the physical association with hnRNP-K at repressed genes and regulation of p53 mediates apoptosis.
Abstract: Recently, more than 1000 large intergenic noncoding RNAs (lincRNAs) have been reported. These RNAs are evolutionarily conserved in mammalian genomes and thus presumably function in diverse biological processes. Here, we report the identification of lincRNAs that are regulated by p53. One of these lincRNAs (lincRNA-p21) serves as a repressor in p53-dependent transcriptional responses. Inhibition of lincRNA-p21 affects the expression of hundreds of gene targets enriched for genes normally repressed by p53. The observed transcriptional repression by lincRNA-p21 is mediated through the physical association with hnRNP-K. This interaction is required for proper genomic localization of hnRNP-K at repressed genes and regulation of p53 mediates apoptosis. We propose a model whereby transcription factors activate lincRNAs that serve as key repressors by physically associating with repressive complexes and modulate their localization to sets of previously active genes.

1,593 citations

Journal Article

1,091 citations

01 Jan 2009
TL;DR: In this article, a review outlines the current understanding of miRNA target recognition in animals and discusses the widespread impact of miRNAs on both the expression and evolution of protein-coding genes.
Abstract: MicroRNAs (miRNAs) are endogenous ∼23 nt RNAs that play important gene-regulatory roles in animals and plants by pairing to the mRNAs of protein-coding genes to direct their posttranscriptional repression. This review outlines the current understanding of miRNA target recognition in animals and discusses the widespread impact of miRNAs on both the expression and evolution of protein-coding genes.

646 citations

Journal ArticleDOI
TL;DR: There is an urgent need to prioritize research in reproductive physiology and pathophysiology, particularly in highly industrialized countries facing decreasing populations, because environmental exposures arising from modern lifestyle, rather than genetics, are the most important factors in the observed trends.
Abstract: It is predicted that Japan and European Union will soon experience appreciable decreases in their populations due to persistently low total fertility rates (TFR) below replacement level (2.1 child ...

631 citations