scispace - formally typeset
Search or ask a question
Author

Huib N. Caron

Other affiliations: Boston Children's Hospital
Bio: Huib N. Caron is an academic researcher from University of Amsterdam. The author has contributed to research in topics: Neuroblastoma & Serial analysis of gene expression. The author has an hindex of 41, co-authored 72 publications receiving 9388 citations. Previous affiliations of Huib N. Caron include Boston Children's Hospital.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a comprehensive overview of the structure, function and tissue distribution of members of the classical histone deacetylase (HDAC) family, in order to gain insight into the regulation of gene expression through HDAC activity is presented.
Abstract: Transcriptional regulation in eukaryotes occurs within a chromatin setting, and is strongly influenced by the post-translational modification of histones, the building blocks of chromatin, such as methylation, phosphorylation and acetylation. Acetylation is probably the best understood of these modifications: hyperacetylation leads to an increase in the expression of particular genes, and hypoacetylation has the opposite effect. Many studies have identified several large, multisubunit enzyme complexes that are responsible for the targeted deacetylation of histones. The aim of this review is to give a comprehensive overview of the structure, function and tissue distribution of members of the classical histone deacetylase (HDAC) family, in order to gain insight into the regulation of gene expression through HDAC activity. SAGE (serial analysis of gene expression) data show that HDACs are generally expressed in almost all tissues investigated. Surprisingly, no major differences were observed between the expression pattern in normal and malignant tissues. However, significant variation in HDAC expression was observed within tissue types. HDAC inhibitors have been shown to induce specific changes in gene expression and to influence a variety of other processes, including growth arrest, differentiation, cytotoxicity and induction of apoptosis. This challenging field has generated many fascinating results which will ultimately lead to a better understanding of the mechanism of gene transcription as a whole.

2,822 citations

Journal ArticleDOI
29 Mar 2012-Nature
TL;DR: The genomic landscape of neuroblastoma reveals two novel molecular defects, chromothripsis and neuritogenesis gene alterations, which frequently occur in high-risk tumours.
Abstract: Neuroblastoma is a childhood tumour of the peripheral sympathetic nervous system. The pathogenesis has for a long time been quite enigmatic, as only very few gene defects were identified in this often lethal tumour. Frequently detected gene alterations are limited to MYCN amplification (20%) and ALK activations (7%). Here we present a whole-genome sequence analysis of 87 neuroblastoma of all stages. Few recurrent amino-acid-changing mutations were found. In contrast, analysis of structural defects identified a local shredding of chromosomes, known as chromothripsis, in 18% of high-stage neuroblastoma. These tumours are associated with a poor outcome. Structural alterations recurrently affected ODZ3, PTPRD and CSMD1, which are involved in neuronal growth cone stabilization. In addition, ATRX, TIAM1 and a series of regulators of the Rac/Rho pathway were mutated, further implicating defects in neuritogenesis in neuroblastoma. Most tumours with defects in these genes were aggressive high-stage neuroblastomas, but did not carry MYCN amplifications. The genomic landscape of neuroblastoma therefore reveals two novel molecular defects, chromothripsis and neuritogenesis gene alterations, which frequently occur in high-risk tumours.

776 citations

Journal ArticleDOI
16 Feb 2001-Science
TL;DR: The Human Transcriptome Map (HPM) as mentioned in this paper is a tool to search for genes that are overexpressed or silenced in cancer using the SAGE serial analysis of gene expression.
Abstract: The chromosomal position of human genes is rapidly being established. We integrated these mapping data with genome-wide messenger RNA expression profiles as provided by SAGE (serial analysis of gene expression). Over 2.45 million SAGE transcript tags, including 160,000 tags of neuroblastomas, are presently known for 12 tissue types. We developed algorithms to assign these tags to UniGene clusters and their chromosomal position. The resulting Human Transcriptome Map generates gene expression profiles for any chromosomal region in 12 normal and pathologic tissue types. The map reveals a clustering of highly expressed genes to specific chromosomal regions. It provides a tool to search for genes that are overexpressed or silenced in cancer.

770 citations

Journal ArticleDOI
28 Aug 2008-PLOS ONE
TL;DR: The new medulloblastoma classification presented in this study will greatly enhance the understanding of this heterogeneous disease and enable a better selection and evaluation of patients in clinical trials, and it will support the development of new molecular targeted therapies.
Abstract: Background: Medulloblastoma is the most common malignant brain tumor in children. Despite recent improvements in cure rates, prediction of disease outcome remains a major challenge and survivors suffer from serious therapy-related side-effects. Recent data showed that patients with WNT-activated tumors have a favorable prognosis, suggesting that these patients could be treated less intensively, thereby reducing the side-effects. This illustrates the potential benefits of a robust classification of medulloblastoma patients and a detailed knowledge of associated biological mechanisms. Methods and Findings: To get a better insight into the molecular biology of medulloblastoma we established mRNA expression profiles of 62 medulloblastomas and analyzed 52 of them also by comparative genomic hybridization (CGH) arrays. Five molecular subtypes were identified, characterized by WNT signaling (A; 9 cases), SHH signaling (B; 15 cases), expression of neuronal differentiation genes (C and D; 16 and 11 cases, respectively) or photoreceptor genes (D and E; both 11 cases). Mutations in β-catenin were identified in all 9 type A tumors, but not in any other tumor. PTCH1 mutations were exclusively identified in type B tumors. CGH analysis identified several fully or partly subtype-specific chromosomal aberrations. Monosomy of chromosome 6 occurred only in type A tumors, loss of 9q mostly occurred in type B tumors, whereas chromosome 17 aberrations, most common in medulloblastoma, were strongly associated with type C or D tumors. Loss of the inactivated X-chromosome was highly specific for female cases of type C, D and E tumors. Gene expression levels faithfully reflected the chromosomal copy number changes. Clinicopathological features significantly different between the 5 subtypes included metastatic disease and age at diagnosis and histology. Metastatic disease at diagnosis was significantly associated with subtypes C and D and most strongly with subtype E. Patients below 3 yrs of age had type B, D, or E tumors. Type B included most desmoplastic cases. We validated and confirmed the molecular subtypes and their associated clinicopathological features with expression data from a second independent series of 46 medulloblastomas. Conclusions: The new medulloblastoma classification presented in this study will greatly enhance the understanding of this heterogeneous disease. It will enable a better selection and evaluation of patients in clinical trials, and it will support the development of new molecular targeted therapies. Ultimately, our results may lead to more individualized therapies with improved cure rates and a better quality of life.

680 citations

Journal ArticleDOI
TL;DR: This article summarizes the understanding of neuroblastoma biology and prognostic features and discusses their impact on current and proposed risk stratification schemas, risk-based therapeutic approaches, and the development of novel therapies for patients at high risk for failure.
Abstract: Neuroblastoma, a neoplasm of the sympathetic nervous system, is the second most common extracranial malignant tumor of childhood and the most common solid tumor of infancy. Neuroblastoma is a heterogeneous malignancy with prognosis ranging from near uniform survival to high risk for fatal demise. Neuroblastoma serves as a paradigm for the prognostic utility of biologic and clinical data and the potential to tailor therapy for patient cohorts at low, intermediate, and high risk for recurrence. This article summarizes our understanding of neuroblastoma biology and prognostic features and discusses their impact on current and proposed risk stratification schemas, risk-based therapeutic approaches, and the development of novel therapies for patients at high risk for failure.

564 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, high-density oligonucleotide arrays offer the opportunity to examine patterns of gene expression on a genome scale, and the authors have designed custom arrays that interrogate the expression of the vast majority of proteinencoding human and mouse genes and have used them to profile a panel of 79 human and 61 mouse tissues.
Abstract: The tissue-specific pattern of mRNA expression can indicate important clues about gene function. High-density oligonucleotide arrays offer the opportunity to examine patterns of gene expression on a genome scale. Toward this end, we have designed custom arrays that interrogate the expression of the vast majority of protein-encoding human and mouse genes and have used them to profile a panel of 79 human and 61 mouse tissues. The resulting data set provides the expression patterns for thousands of predicted genes, as well as known and poorly characterized genes, from mice and humans. We have explored this data set for global trends in gene expression, evaluated commonly used lines of evidence in gene prediction methodologies, and investigated patterns indicative of chromosomal organization of transcription. We describe hundreds of regions of correlated transcription and show that some are subject to both tissue and parental allele-specific expression, suggesting a link between spatial expression and imprinting.

3,513 citations

Journal ArticleDOI
TL;DR: The method of “nearest shrunken centroids” identifies subsets of genes that best characterize each class, which was highly efficient in finding genes for classifying small round blue cell tumors and leukemias.
Abstract: We have devised an approach to cancer class prediction from gene expression profiling, based on an enhancement of the simple nearest prototype (centroid) classifier. We shrink the prototypes and hence obtain a classifier that is often more accurate than competing methods. Our method of "nearest shrunken centroids" identifies subsets of genes that best characterize each class. The technique is general and can be used in many other classification problems. To demonstrate its effectiveness, we show that the method was highly efficient in finding genes for classifying small round blue cell tumors and leukemias.

2,954 citations

Journal ArticleDOI
TL;DR: In this paper, a comprehensive overview of the structure, function and tissue distribution of members of the classical histone deacetylase (HDAC) family, in order to gain insight into the regulation of gene expression through HDAC activity is presented.
Abstract: Transcriptional regulation in eukaryotes occurs within a chromatin setting, and is strongly influenced by the post-translational modification of histones, the building blocks of chromatin, such as methylation, phosphorylation and acetylation. Acetylation is probably the best understood of these modifications: hyperacetylation leads to an increase in the expression of particular genes, and hypoacetylation has the opposite effect. Many studies have identified several large, multisubunit enzyme complexes that are responsible for the targeted deacetylation of histones. The aim of this review is to give a comprehensive overview of the structure, function and tissue distribution of members of the classical histone deacetylase (HDAC) family, in order to gain insight into the regulation of gene expression through HDAC activity. SAGE (serial analysis of gene expression) data show that HDACs are generally expressed in almost all tissues investigated. Surprisingly, no major differences were observed between the expression pattern in normal and malignant tissues. However, significant variation in HDAC expression was observed within tissue types. HDAC inhibitors have been shown to induce specific changes in gene expression and to influence a variety of other processes, including growth arrest, differentiation, cytotoxicity and induction of apoptosis. This challenging field has generated many fascinating results which will ultimately lead to a better understanding of the mechanism of gene transcription as a whole.

2,822 citations

Journal ArticleDOI
17 May 2012-Nature
TL;DR: In addition to uncovering a new principle of cis-regulatory architecture of mammalian chromosomes, this study sets the stage for the full genetic dissection of the mouse X-inactivation centre.
Abstract: High-order chromatin folding in topologically associating domains has a critical role in proper long-range transcriptional control around the Xist locus, and presumably throughout the genome. The spatial organization of the genome is linked to biological function, and advances in genomic technologies are allowing the conformation of chromosomes to be assessed genome wide. Two groups present complementary papers on the subject. Bing Ren and colleagues use Hi-C, an adaption of the chromosome conformation capture (3C) technique, to investigate the three-dimensional organization of the human and mouse genomes in embryonic stem cells and terminally differentiated cell types. Large, megabase-sized chromatin interaction domains, termed topological domains, are found to be a pervasive and conserved feature of genome organization. Edith Heard and colleagues use chromosome conformation capture carbon-copy (5C) technology and high-resolution microscopy to obtain a high-resolution map of the chromosomal interactions over a large region of the mouse X chromosome, including the X-inactivation centre. A series of discrete topologically associating domains is revealed, as is a previously unknown long intergenic RNA with a potential regulatory role. In eukaryotes transcriptional regulation often involves multiple long-range elements and is influenced by the genomic environment1. A prime example of this concerns the mouse X-inactivation centre (Xic), which orchestrates the initiation of X-chromosome inactivation (XCI) by controlling the expression of the non-protein-coding Xist transcript. The extent of Xic sequences required for the proper regulation of Xist remains unknown. Here we use chromosome conformation capture carbon-copy (5C)2 and super-resolution microscopy to analyse the spatial organization of a 4.5-megabases (Mb) region including Xist. We discover a series of discrete 200-kilobase to 1 Mb topologically associating domains (TADs), present both before and after cell differentiation and on the active and inactive X. TADs align with, but do not rely on, several domain-wide features of the epigenome, such as H3K27me3 or H3K9me2 blocks and lamina-associated domains. TADs also align with coordinately regulated gene clusters. Disruption of a TAD boundary causes ectopic chromosomal contacts and long-range transcriptional misregulation. The Xist/Tsix sense/antisense unit illustrates how TADs enable the spatial segregation of oppositely regulated chromosomal neighbourhoods, with the respective promoters of Xist and Tsix lying in adjacent TADs, each containing their known positive regulators. We identify a novel distal regulatory region of Tsix within its TAD, which produces a long intervening RNA, Linx. In addition to uncovering a new principle of cis-regulatory architecture of mammalian chromosomes, our study sets the stage for the full genetic dissection of the X-inactivation centre.

2,627 citations

Journal ArticleDOI
TL;DR: This timeline traces the field from its conception to the present day and addresses the genetic basis of epigenetic changes — an emerging area that promises to unite cancer genetics and epigenetics, and might serve as a model for understanding the epigenetic basis of human disease more generally.
Abstract: Since its discovery in 1983, the epigenetics of human cancer has been in the shadows of human cancer genetics. But this area has become increasingly visible with a growing understanding of specific epigenetic mechanisms and their role in cancer, including hypomethylation, hypermethylation, loss of imprinting and chromatin modification. This timeline traces the field from its conception to the present day. It also addresses the genetic basis of epigenetic changes — an emerging area that promises to unite cancer genetics and epigenetics, and might serve as a model for understanding the epigenetic basis of human disease more generally.

2,240 citations