scispace - formally typeset
Search or ask a question
Author

Huiru Yan

Bio: Huiru Yan is an academic researcher from Shandong Agricultural University. The author has contributed to research in topics: Glutathione S-transferase & Oxidative stress. The author has an hindex of 6, co-authored 6 publications receiving 349 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: GhWRKY17 responds to drought and salt stress through ABA signaling and the regulation of cellular ROS production in plants, and transgenic plants exhibited reduced tolerance to oxidative stress compared with wild-type plants.
Abstract: Drought and high salinity are two major environmental factors that significantly limit the productivity of agricultural crops worldwide. WRKY transcription factors play essential roles in the adaptation of plants to abiotic stresses. However, WRKY genes involved in drought and salt tolerance in cotton (Gossypium hirsutum) are largely unknown. Here, a group IId WRKY gene, GhWRKY17, was isolated and characterized. GhWRKY17 was found to be induced after exposure to drought, salt, H2O2 and ABA. The constitutive expression of GhWRKY17 in Nicotiana benthamiana remarkably reduced plant tolerance to drought and salt stress, as determined through physiological analyses of the germination rate, root growth, survival rate, leaf water loss and Chl content. GhWRKY17 transgenic plants were observed to be more sensitive to ABA-mediated seed germination and root growth. However, overexpressing GhWRKY17 in N. benthamiana impaired ABA-induced stomatal closure. Furthermore, we found that GhWRKY17 modulated the increased sensitivity of plants to drought by reducing the level of ABA, and transcript levels of ABA-inducible genes, including AREB, DREB, NCED, ERD and LEA, were clearly repressed under drought and salt stress conditions. Consistent with the accumulation of reactive oxygen species (ROS), reduced proline contents and enzyme activities, elevated electrolyte leakage and malondialdehyde, and lower expression of ROS-scavenging genes, including APX, CAT and SOD, the GhWRKY17 transgenic plants exhibited reduced tolerance to oxidative stress compared with wild-type plants. These results therefore indicate that GhWRKY17 responds to drought and salt stress through ABA signaling and the regulation of cellular ROS production in plants.

240 citations

Journal ArticleDOI
Huiru Yan1, Haihong Jia1, Hongru Gao1, Xingqi Guo1, Baohua Xu1 
TL;DR: Functional assays revealed that AccGSTS1 could remove H2O2, thereby protecting DNA from oxidative damage, and suggested that the enzyme is a crucial antioxidant enzyme involved in cellular antioxidant defenses and honey bee survival.
Abstract: Glutathione S-transferases (GSTs) are members of a multifunctional antioxidant enzyme superfamily that play pivotal roles in both detoxification and protection against oxidative damage caused by reactive oxygen species. In this study, a complementary DNA (cDNA) encoding a sigma class GST was identified in the Chinese honey bee, Apis cerana cerana (AccGSTS1). AccGSTS1 was constitutively expressed in all tissues of adult worker bees, including the brain, fat body, epidermis, muscle, and midgut, with particularly robust transcription in the fat body. Relative messenger RNA expression levels of AccGSTS1 at different developmental stages varied, with the highest levels of expression observed in adults. The potential function of AccGSTS1 in cellular defenses against abiotic stresses (cold, heat, UV, H2O2, HgCl2, and insecticides) was investigated. AccGSTS1 was significantly upregulated in response to all of the treatment conditions examined, although the induction levels were varied. Recombinant AccGSTS1 protein showed characteristic glutathione-conjugating catalytic activity toward 1-chloro-2,4-dinitrobenzene. Functional assays revealed that AccGSTS1 could remove H2O2, thereby protecting DNA from oxidative damage. Escherichia coli overexpressing AccGSTS1 showed long-term resistance under conditions of oxidative stress. Together, these results suggest that AccGSTS1 is a crucial antioxidant enzyme involved in cellular antioxidant defenses and honey bee survival.

70 citations

Journal ArticleDOI
TL;DR: Results suggest that AccGSTO2 plays a protective role in counteracting oxidative stress and could prevent DNA damage.
Abstract: Oxidative stress may be the most significant threat to the survival of living organisms. Glutathione S-transferases (GSTs) serve as the primary defences against xenobiotic and peroxidative-induced oxidative damage. In contrast to other well-defined GST classes, the Omega-class members are poorly understood, particularly in insects. Here, we isolated and characterised the GSTO2 gene from Apis cerana cerana (AccGSTO2). The predicted transcription factor binding sites in the AccGSTO2 promoter suggested possible functions in early development and antioxidant defence. Real-time quantitative PCR (qPCR) and western blot analyses indicated that AccGSTO2 was highly expressed in larvae and was predominantly localised to the brain tissue in adults. Moreover, AccGSTO2 transcription was induced by various abiotic stresses. The purified recombinant AccGSTO2 exhibited glutathione-dependent dehydroascorbate reductase and peroxidase activities. Furthermore, it could prevent DNA damage. In addition, Escherichia coli overexpressing AccGSTO2 displayed resistance to long-term oxidative stress exposure in disc diffusion assays. Taken together, these results suggest that AccGSTO2 plays a protective role in counteracting oxidative stress.

48 citations

Journal ArticleDOI
Huiru Yan1, Fei Meng1, Haihong Jia1, Xingqi Guo1, Baohua Xu1 
TL;DR: The data suggest that AccGSTZ1 is an oxidative stress-inducible antioxidant enzyme that plays an important role in the protection against oxidative stress and may be of critical importance for the survival of the honey bees.

36 citations

Journal ArticleDOI
TL;DR: These findings indicate that the larvae AccGSTs4 may play a role in mercury stress response, and it will help to protect honeybees from heavy metals.
Abstract: Glutathione S-transferases (GSTs) are multifunctional enzymes that are mainly involved in detoxification of endogenous and xenobiotic compounds and oxidative stress resistance in insects. In this study, we identified a sigma class GST from Apis cerana cerana (AccGSTs4). The open reading frame of cDNA was 612 bp and encoded a 203 amino acid polypeptide, which exhibited the structural motif and domain organization characteristic of GST. Homology and evolutionary analysis indicated that the induced amino acid sequence of AccGSTs4 belonged to an insect sigma class group. Expression analysis indicated that AccGSTs4 was presented in all stages of development with high level in 4th instar larvae. Immunolocalization further revealed the distribution of AccGSTs4 in 4th instar larvae. RT-qPCR showed that the transcripts of AccGSTs4 from the larvae were upregulated under dietary HgCl(2). The GST activity under stress was higher than the controls fed on HgCl(2)-free diet. Disc diffusion assay provided evidence of recAccGSTs4 resistance to long-term exposure of HgCl(2) stress. Additionally, analysis of 5'-flanking region further clarified the probable expression patterns of AccGSTs4. Taken together, our findings indicate that the larvae AccGSTs4 may play a role in mercury stress response, and it will help to protect honeybees from heavy metals.

32 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An overview of current knowledge about homeostasis regulation of ROS in crop plants is presented, and the essential proteins that are involved in abiotic stress tolerance of crop plants through ROS regulation are summarized.
Abstract: Abiotic stresses such as drought, cold, salt and heat cause reduction of plant growth and loss of crop yield worldwide. Reactive oxygen species (ROS) including hydrogen peroxide (H2O2), superoxide anions (O2•‾), hydroxyl radical (OH•) and singlet oxygen (1O2) are by-products of physiological metabolisms, and are precisely controlled by enzymatic and non-enzymatic antioxidant defense systems. ROS are significantly accumulated under abiotic stress conditions, which cause oxidative damage and eventually resulting in cell death. Recently, ROS have been also recognized as key players in the complex signaling network of plants stress responses. The involvement of ROS in signal transduction implies that there must be coordinated function of regulation networks to maintain ROS at non-toxic levels in a delicate balancing act between ROS production, involving ROS generating enzymes and the unavoidable production of ROS during basic cellular metabolism, and ROS-scavenging pathways. Increasing evidence showed that ROS play crucial roles in abiotic stress responses of crop plants for the activation of stress-response and defense pathways. More importantly, manipulating ROS levels provides an opportunity to enhance stress tolerances of crop plants under a variety of unfavorable environmental conditions. This review presents an overview of current knowledge about homeostasis regulation of ROS in crop plants. In particular, we summarize the essential proteins that are involved in abiotic stress tolerance of crop plants through ROS regulation. Finally, the challenges toward the improvement of abiotic stress tolerance through ROS regulation in crops are discussed.

745 citations

Journal ArticleDOI
TL;DR: The WRKY gene family is among the largest families of transcription factors (TFs) in higher plants and regulates the plant hormone signal transduction pathway, playing critical roles in some plant processes in response to biotic and abiotic stress.
Abstract: The WRKY gene family is among the largest families of transcription factors (TFs) in higher plants. By regulating the plant hormone signal transduction pathway, these TFs play critical roles in some plant processes in response to biotic and abiotic stress. Various bodies of research have demonstrated the important biological functions of WRKY TFs in plant response to different kinds of biotic and abiotic stresses and working mechanisms. However, very little summarization has been done to review their research progress. Not just important TFs function in plant response to biotic and abiotic stresses, WRKY also participates in carbohydrate synthesis, senescence, development, and secondary metabolites synthesis. WRKY proteins can bind to W-box (TGACC (A/T)) in the promoter of its target genes and activate or repress the expression of downstream genes to regulate their stress response. Moreover, WRKY proteins can interact with other TFs to regulate plant defensive responses. In the present review, we focus on the structural characteristics of WRKY TFs and the research progress on their functions in plant responses to a variety of stresses.

524 citations

Journal ArticleDOI
TL;DR: The western honey bee Apis mellifera has a deficit of detoxification genes spanning Phase I (functionalization), II (conjugation) and III (excretion) gene families, which may render them vulnerable to synergistic interactions among xenobiotics.
Abstract: Relative to most other insect genomes, the western honey bee Apis mellifera has a deficit of detoxification genes spanning Phase I (functionalization), II (conjugation) and III (excretion) gene families. Although honeybees do not display across-the-board greater sensitivity to pesticides, this deficit may render them vulnerable to synergistic interactions among xenobiotics. Diet quality, in terms of protein and phytochemical content, has a pronounced influence on tolerance of toxic compounds. Detoxification gene inventory reduction may reflect an evolutionary history of consuming relatively chemically benign nectar and pollen, as other apoid pollinators display comparable levels of cytochrome P450 gene reduction. Enzymatic detoxification in the eusocial A. mellifera may be complemented by behaviors comprising a 'social detoxification system,' including forager discrimination, dilution by pollen mixing, and colony food processing via microbial fermentation, that reduces the number or quantity of ingested chemicals requiring detoxification.

242 citations

Journal ArticleDOI
TL;DR: The functional roles highlight the importance of WRKYs in stress response in wheat, and TaWRKY33 transgenic lines exhibited enhanced tolerance to heat stress.
Abstract: Drought stress is one of the major causes of crop loss. WRKY transcription factors, as one of the largest transcription factor families, play important roles in regulation of many plant processes, including drought stress response. However, far less information is available on drought-responsive WRKY genes in wheat (Triticum aestivum L.), one of the three staple food crops. Forty eight putative drought-induced WRKY genes were identified from a comparison between de novo transcriptome sequencing data of wheat without or with drought treatment. TaWRKY1 and TaWRKY33 from WRKY Groups III and II, respectively, were selected for further investigation. Subcellular localization assays revealed that TaWRKY1 and TaWRKY33 were localized in the nuclei in wheat mesophyll protoplasts. Various abiotic stress-related cis-acting elements were observed in the promoters of TaWRKY1 and TaWRKY33. Quantitative real-time PCR (qRT-PCR) analysis showed that TaWRKY1 was slightly up-regulated by high-temperature and abscisic acid (ABA), and down-regulated by low-temperature. TaWRKY33 was involved in high responses to high-temperature, low-temperature, ABA and jasmonic acid methylester (MeJA). Overexpression of TaWRKY1 and TaWRKY33 activated several stress-related downstream genes, increased germination rates, and promoted root growth in Arabidopsis under various stresses. TaWRKY33 transgenic Arabidopsis lines showed lower rates of water loss than TaWRKY1 transgenic Arabidopsis lines and wild type plants during dehydration. Most importantly, TaWRKY33 transgenic lines exhibited enhanced tolerance to heat stress. The functional roles highlight the importance of WRKYs in stress response.

242 citations

Journal ArticleDOI
TL;DR: The diverse signaling pattern and biological functions of WRKY proteins throughout the plant kingdom along with the growing prospects in this field of research are reckoned.
Abstract: WRKY proteins are emerging players in plant signaling and have been thoroughly reported to play important roles in plants under biotic stress like pathogen attack. However, recent advances in this field do reveal the enormous significance of these proteins in eliciting responses induced by abiotic stresses. WRKY proteins act as major transcription factors, either as positive or negative regulators. Specific WRKY factors which help in the expression of a cluster of stress-responsive genes are being targeted and genetically modified to induce improved abiotic stress tolerance in plants. The knowledge regarding the signaling cascade leading to the activation of the WRKY proteins, their interaction with other proteins of the signaling pathway, and the downstream genes activated by them are altogether vital for justified targeting of the WRKY genes. WRKY proteins have also been considered to generate tolerance against multiple abiotic stresses with possible roles in mediating a cross talk between abiotic and biotic stress responses. In this review, we have reckoned the diverse signaling pattern and biological functions of WRKY proteins throughout the plant kingdom along with the growing prospects in this field of research.

221 citations