scispace - formally typeset
Search or ask a question
Author

Huitao Shen

Other affiliations: Tsinghua University
Bio: Huitao Shen is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Monte Carlo method & Dipole. The author has an hindex of 20, co-authored 37 publications receiving 2972 citations. Previous affiliations of Huitao Shen include Tsinghua University.

Papers
More filters
Journal ArticleDOI
TL;DR: The topological band theory for systems described by non-Hermitian Hamiltonians, whose energy spectra are generally complex, is developed and "gapped" bands in one and two dimensions are classified by explicitly finding their topological invariants.
Abstract: We develop the topological band theory for systems described by non-Hermitian Hamiltonians, whose energy spectra are generally complex. After generalizing the notion of gapped band structures to the non-Hermitian case, we classify ``gapped'' bands in one and two dimensions by explicitly finding their topological invariants. We find nontrivial generalizations of the Chern number in two dimensions, and a new classification in one dimension, whose topology is determined by the energy dispersion rather than the energy eigenstates. We then study the bulk-edge correspondence and the topological phase transition in two dimensions. Different from the Hermitian case, the transition generically involves an extended intermediate phase with complex-energy band degeneracies at isolated ``exceptional points'' in momentum space. We also systematically classify all types of band degeneracies.

765 citations

Journal Article
TL;DR: In this paper, the authors developed the topological band theory for systems described by non-Hermitian Hamiltonians, whose energy spectra are generally complex, and classified gapped bands in one and two dimensions by explicitly finding their topological invariants.
Abstract: We develop the topological band theory for systems described by non-Hermitian Hamiltonians, whose energy spectra are generally complex. After generalizing the notion of gapped band structures to the non-Hermitian case, we classify ``gapped'' bands in one and two dimensions by explicitly finding their topological invariants. We find nontrivial generalizations of the Chern number in two dimensions, and a new classification in one dimension, whose topology is determined by the energy dispersion rather than the energy eigenstates. We then study the bulk-edge correspondence and the topological phase transition in two dimensions. Different from the Hermitian case, the transition generically involves an extended intermediate phase with complex-energy band degeneracies at isolated ``exceptional points'' in momentum space. We also systematically classify all types of band degeneracies.

435 citations

Journal ArticleDOI
17 Jan 2019-Nature
TL;DR: The nonlinear Hall effect is observed in bilayer WTe2 in the absence of a magnetic field, providing a direct measure of the dipole moment of the Berry curvature, which arises from layer-polarized Dirac fermions in bilayers WTe 2 under time-reversal-symmetric conditions.
Abstract: The electrical Hall effect is the production, upon the application of an electric field, of a transverse voltage under an out-of-plane magnetic field. Studies of the Hall effect have led to important breakthroughs, including the discoveries of Berry curvature and topological Chern invariants1,2. The internal magnetization of magnets means that the electrical Hall effect can occur in the absence of an external magnetic field2; this 'anomalous' Hall effect is important for the study of quantum magnets2-7. The electrical Hall effect has rarely been studied in non-magnetic materials without external magnetic fields, owing to the constraint of time-reversal symmetry. However, only in the linear response regime-when the Hall voltage is linearly proportional to the external electric field-does the Hall effect identically vanish as a result of time-reversal symmetry; the Hall effect in the nonlinear response regime is not subject to such symmetry constraints8-10. Here we report observations of the nonlinear Hall effect10 in electrical transport in bilayers of the non-magnetic quantum material WTe2 under time-reversal-symmetric conditions. We show that an electric current in bilayer WTe2 leads to a nonlinear Hall voltage in the absence of a magnetic field. The properties of this nonlinear Hall effect are distinct from those of the anomalous Hall effect in metals: the nonlinear Hall effect results in a quadratic, rather than linear, current-voltage characteristic and, in contrast to the anomalous Hall effect, the nonlinear Hall effect results in a much larger transverse than longitudinal voltage response, leading to a nonlinear Hall angle (the angle between the total voltage response and the applied electric field) of nearly 90 degrees. We further show that the nonlinear Hall effect provides a direct measure of the dipole moment10 of the Berry curvature, which arises from layer-polarized Dirac fermions in bilayer WTe2. Our results demonstrate a new type of Hall effect and provide a way of detecting Berry curvature in non-magnetic quantum materials.

426 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used mid-infrared optoelectronic microscopy to investigate the Berry curvature in monolayer WTe2 and observed an in-plane circular photogalvanic current even under normal incidence.
Abstract: Recent experimental evidence for the quantum spin Hall (QSH) state in monolayer WTe2 has linked the fields of two-dimensional materials and topological physics1–7. This two-dimensional topological crystal also displays unconventional spin–torque8 and gate-tunable superconductivity7. Whereas the realization of the QSH has demonstrated the nontrivial topology of the electron wavefunctions of monolayer WTe2, the geometrical properties of the wavefunction, such as the Berry curvature9, remain unstudied. Here we utilize mid-infrared optoelectronic microscopy to investigate the Berry curvature in monolayer WTe2. By optically exciting electrons across the inverted QSH gap, we observe an in-plane circular photogalvanic current even under normal incidence. The application of an out-of-plane displacement field allows further control of the direction and magnitude of the photocurrent. The observed photocurrent reveals a Berry curvature dipole that arises from the nontrivial wavefunctions near the inverted gap edge. The Berry curvature dipole and strong electric field effect are enabled by the inverted band structure and tilted crystal lattice of monolayer WTe2. Such an electrically switchable Berry curvature dipole may facilitate the observation of a wide range of quantum geometrical phenomena such as the quantum nonlinear Hall10,11, orbital-Edelstein12 and chiral polaritonic effects13,14.

287 citations

Journal ArticleDOI
TL;DR: In this article, a general recipe based on the Hopf map for constructing models of nodal-link semimetals is proposed, which host linked nodal rings in the Brillouin zone.
Abstract: In topological semimetals, the valance band and conduction band meet at zero-dimensional nodal points or one-dimensional nodal rings, which are protected by band topology and symmetries. In this Rapid Communication, we introduce ``nodal-link semimetals'', which host linked nodal rings in the Brillouin zone. We put forward a general recipe based on the Hopf map for constructing models of nodal-link semimetals. The consequences of nodal ring linking in the Landau levels and Floquet properties are investigated.

230 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Topological photonics is a rapidly emerging field of research in which geometrical and topological ideas are exploited to design and control the behavior of light as mentioned in this paper, which holds great promise for applications.
Abstract: Topological photonics is a rapidly emerging field of research in which geometrical and topological ideas are exploited to design and control the behavior of light. Drawing inspiration from the discovery of the quantum Hall effects and topological insulators in condensed matter, recent advances have shown how to engineer analogous effects also for photons, leading to remarkable phenomena such as the robust unidirectional propagation of light, which hold great promise for applications. Thanks to the flexibility and diversity of photonics systems, this field is also opening up new opportunities to realize exotic topological models and to probe and exploit topological effects in new ways. This article reviews experimental and theoretical developments in topological photonics across a wide range of experimental platforms, including photonic crystals, waveguides, metamaterials, cavities, optomechanics, silicon photonics, and circuit QED. A discussion of how changing the dimensionality and symmetries of photonics systems has allowed for the realization of different topological phases is offered, and progress in understanding the interplay of topology with non-Hermitian effects, such as dissipation, is reviewed. As an exciting perspective, topological photonics can be combined with optical nonlinearities, leading toward new collective phenomena and novel strongly correlated states of light, such as an analog of the fractional quantum Hall effect.

3,052 citations

Journal ArticleDOI
TL;DR: This article reviews in a selective way the recent research on the interface between machine learning and the physical sciences, including conceptual developments in ML motivated by physical insights, applications of machine learning techniques to several domains in physics, and cross fertilization between the two fields.
Abstract: Machine learning (ML) encompasses a broad range of algorithms and modeling tools used for a vast array of data processing tasks, which has entered most scientific disciplines in recent years. This article reviews in a selective way the recent research on the interface between machine learning and the physical sciences. This includes conceptual developments in ML motivated by physical insights, applications of machine learning techniques to several domains in physics, and cross fertilization between the two fields. After giving a basic notion of machine learning methods and principles, examples are described of how statistical physics is used to understand methods in ML. This review then describes applications of ML methods in particle physics and cosmology, quantum many-body physics, quantum computing, and chemical and material physics. Research and development into novel computing architectures aimed at accelerating ML are also highlighted. Each of the sections describe recent successes as well as domain-specific methodology and challenges.

1,504 citations

Journal ArticleDOI
TL;DR: In this paper, the role of pertubative renormalization group (RG) approaches and self-consistent renormalized spin fluctuation (SCR-SF) theories to understand the quantum-classical crossover in the vicinity of the quantum critical point with generalization to the Kondo effect in heavy-fermion systems is discussed.
Abstract: We give a general introduction to quantum phase transitions in strongly-correlated electron systems. These transitions which occur at zero temperature when a non-thermal parameter $g$ like pressure, chemical composition or magnetic field is tuned to a critical value are characterized by a dynamic exponent $z$ related to the energy and length scales $\Delta$ and $\xi$. Simple arguments based on an expansion to first order in the effective interaction allow to define an upper-critical dimension $D_{C}=4$ (where $D=d+z$ and $d$ is the spatial dimension) below which mean-field description is no longer valid. We emphasize the role of pertubative renormalization group (RG) approaches and self-consistent renormalized spin fluctuation (SCR-SF) theories to understand the quantum-classical crossover in the vicinity of the quantum critical point with generalization to the Kondo effect in heavy-fermion systems. Finally we quote some recent inelastic neutron scattering experiments performed on heavy-fermions which lead to unusual scaling law in $\omega /T$ for the dynamical spin susceptibility revealing critical local modes beyond the itinerant magnetism scheme and mention new attempts to describe this local quantum critical point.

1,347 citations