scispace - formally typeset
Search or ask a question
Author

Hujia Cao

Bio: Hujia Cao is an academic researcher from Zhejiang University. The author has contributed to research in topics: Quantum dot & OLED. The author has an hindex of 5, co-authored 5 publications receiving 1772 citations.

Papers
More filters
Journal ArticleDOI
06 Nov 2014-Nature
TL;DR: This optoelectronic performance is achieved by inserting an insulating layer between the quantum dot layer and the oxide electron-transport layer to optimize charge balance in the device and preserve the superior emissive properties of the quantum dots.
Abstract: Solution-processed optoelectronic and electronic devices are attractive owing to the potential for low-cost fabrication of large-area devices and the compatibility with lightweight, flexible plastic substrates. Solution-processed light-emitting diodes (LEDs) using conjugated polymers or quantum dots as emitters have attracted great interest over the past two decades. However, the overall performance of solution-processed LEDs--including their efficiency, efficiency roll-off at high current densities, turn-on voltage and lifetime under operational conditions-remains inferior to that of the best vacuum-deposited organic LEDs. Here we report a solution-processed, multilayer quantum-dot-based LED with excellent performance and reproducibility. It exhibits colour-saturated deep-red emission, sub-bandgap turn-on at 1.7 volts, high external quantum efficiencies of up to 20.5 per cent, low efficiency roll-off (up to 15.1 per cent of the external quantum efficiency at 100 mA cm(-2)), and a long operational lifetime of more than 100,000 hours at 100 cd m(-2), making this device the best-performing solution-processed red LED so far, comparable to state-of-the-art vacuum-deposited organic LEDs. This optoelectronic performance is achieved by inserting an insulating layer between the quantum dot layer and the oxide electron-transport layer to optimize charge balance in the device and preserve the superior emissive properties of the quantum dots. We anticipate that our results will be a starting point for further research, leading to high-performance, all-solution-processed quantum-dot-based LEDs ideal for next-generation display and solid-state lighting technologies.

1,958 citations

Journal ArticleDOI
TL;DR: Entropic ligands are introduced to maximize the intramolecular entropic effects, which increases solubility of various nanocrystals by 10(2)-10(6) by means to greatly improve performance of nanocrystal-based electronic and optoelectronic devices.
Abstract: Solution processability of nanocrystals coated with a stable monolayer of organic ligands (nanocrystal–ligands complexes) is the starting point for their applications, which is commonly measured by their solubility in media. A model described in the other report (10.1021/acs.nanolett.6b00737) reveals that instead of offering steric barrier between inorganic cores, it is the rotation/bending entropy of the C–C σ bonds within typical organic ligands that exponentially enhances solubility of the complexes in solution. Dramatic ligand chain-length effects on the solubility of CdSe-n-alkanoates complexes shall further reveal the power of the model. Subsequently, “entropic ligands” are introduced to maximize the intramolecular entropic effects, which increases solubility of various nanocrystals by 102–106. Entropic ligands can further offer means to greatly improve performance of nanocrystals-based electronic and optoelectronic devices.

154 citations

Journal ArticleDOI
Hujia Cao1, Junliang Ma1, Lin Huang1, Haiyan Qin1, Renyang Meng1, Yang Li1, Xiaogang Peng1 
TL;DR: In this paper, a new synthetic strategy was proposed to confine the excited-state wave functions of the core/shell quantum dots within the core quantum dot and its inner shells (≤∼5 monolayers).
Abstract: Single-molecular spectroscopy reveals that photoluminescence (PL) of a single quantum dot blinks, randomly switching between bright and dim/dark states under constant photoexcitation, and quantum dots photobleach readily. These facts cast great doubts on potential applications of these promising emitters. After ∼20 years of efforts, synthesis of nonblinking quantum dots is still challenging, with nonblinking quantum dots only available in red-emitting window. Here we report synthesis of nonblinking quantum dots covering most part of the visible window using a new synthetic strategy, i.e., confining the excited-state wave functions of the core/shell quantum dots within the core quantum dot and its inner shells (≤ ∼5 monolayers). For the red-emitting ones, the new synthetic strategy yields nonblinking quantum dots with small sizes (∼8 nm in diameter) and improved nonblinking properties. These new nonblinking quantum dots are found to be antibleaching. Results further imply that the PL blinking and photoblea...

60 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of thiol ligands on optical properties of CdSe/CdS core/shell nanocrystals with 1-10 monolayers of cdS shell as the model system were studied.
Abstract: Using CdSe/CdS core/shell nanocrystals with 1–10 monolayers of CdS shell as the model system, we studied effects of thiol ligands on optical properties of the nanocrystals. The core/shell nanocrystals with original ligands possessed near unity photoluminescence (PL) quantum yield and single-exponential PL decay dynamics. The effects of thiol ligands on optical properties were found to depend on the shell thickness, environment (with/without oxygen), and excitation power (single- or multi-exciton). Systematic and quantitative results reported in this work should provide necessary information for fundamental understanding and technical applications of quantum dots (QDs) coated with thiol ligands.

41 citations

Journal ArticleDOI
TL;DR: A new analysis method for single-molecule spectroscopy is introduced that treats the blinking as photochemical/chemical processes (switching between neutral/bright and charged/dim states) involved in PL blinking of single CdSe/CdS core/shell QDs.
Abstract: Understanding photoluminescence (PL) intermittency of single quantum dots (QDs) (intensity blinking by randomly switching between distinguishable brightness states under continuous excitation) has been a long-standing fundamental challenge and potential roadblock for their applications. Here we introduce a new analysis method for single-molecule spectroscopy that treats the blinking as photochemical/chemical processes (switching between neutral/bright and charged/dim states). It uncovers the channels for charging (bright to dim) and discharging (dim to bright) involved in PL blinking of single CdSe/CdS core/shell QDs. Both charging and discharging of the single CdSe/CdS core/shell QD possess a photochemical channel (∼10–5 to 10–6 events/photon) that linearly depends on excitation in both single- and multi-exciton regime. These two linear channels coupled to a spontaneous discharging channel (∼2 events/s) to dictate the QDs from nonblinking to gradually blinking under increasing excitation. For high-qualit...

29 citations


Cited by
More filters
Journal ArticleDOI
01 Oct 2018-Nature
TL;DR: In this article, the authors describe visible-light-emitting perovskite LEDs that surpass the quantum efficiency milestone of 20.3 per cent, which is achieved by a new strategy for managing the compositional distribution in the device.
Abstract: Metal halide perovskite materials are an emerging class of solution-processable semiconductors with considerable potential for use in optoelectronic devices1–3. For example, light-emitting diodes (LEDs) based on these materials could see application in flat-panel displays and solid-state lighting, owing to their potential to be made at low cost via facile solution processing, and could provide tunable colours and narrow emission line widths at high photoluminescence quantum yields4–8. However, the highest reported external quantum efficiencies of green- and red-light-emitting perovskite LEDs are around 14 per cent7,9 and 12 per cent8, respectively—still well behind the performance of organic LEDs10–12 and inorganic quantum dot LEDs13. Here we describe visible-light-emitting perovskite LEDs that surpass the quantum efficiency milestone of 20 per cent. This achievement stems from a new strategy for managing the compositional distribution in the device—an approach that simultaneously provides high luminescence and balanced charge injection. Specifically, we mixed a presynthesized CsPbBr3 perovskite with a MABr additive (where MA is CH3NH3), the differing solubilities of which yield sequential crystallization into a CsPbBr3/MABr quasi-core/shell structure. The MABr shell passivates the nonradiative defects that would otherwise be present in CsPbBr3 crystals, boosting the photoluminescence quantum efficiency, while the MABr capping layer enables balanced charge injection. The resulting 20.3 per cent external quantum efficiency represents a substantial step towards the practical application of perovskite LEDs in lighting and display. A strategy for managing the compositional distribution in metal halide perovskite light-emitting diodes enables them to surpass 20% external quantum efficiency—a step towards their practical application in lighting and displays.

2,346 citations

Journal ArticleDOI
TL;DR: The demonstration of these novel quantum-dot light-emitting diodes based on all-inorganic perovskite CsPbX3 (X = Cl, Br, I) nanocrystals opens a new avenue toward designing optoelectronic devices, such as displays, photodetectors, solar cells, and lasers.
Abstract: Novel quantum-dot light-emitting diodes based on all-inorganic perovskite CsPbX3 (X = Cl, Br, I) nanocrystals are reported. The well-dispersed, single-crystal quantum dots (QDs) exhibit high quantum yields, and tunable light emission wavelength. The demonstration of these novel perovskite QDs opens a new avenue toward designing optoelectronic devices, such as displays, photodetectors, solar cells, and lasers.

2,311 citations

Journal ArticleDOI
TL;DR: In this paper, a room-temperature (RT) synthesis of CsPbX3@X quantum-well band alignment is proposed to guarantee the excitons generation and high-rate radiative recombination at RT.
Abstract: Recently, Kovalenko and co-workers and Li and co-workers developed CsPbX3 (X = Cl, Br, I) inorganic perovskite quantum dots (IPQDs), which exhibited ultrahigh photoluminescence (PL) quantum yields (QYs), low-threshold lasing, and multicolor electroluminescence. However, the usual synthesis needs high temperature, inert gas protection, and localized injection operation, which are severely against applications. Moreover, the so unexpectedly high QYs are very confusing. Here, for the first time, the IPQDs' room-temperature (RT) synthesis, superior PL, underlying origins and potentials in lighting and displays are reported. The synthesis is designed according to supersaturated recrystallization (SR), which is operated at RT, within few seconds, free from inert gas and injection operation. Although formed at RT, IPQDs' PLs have QYs of 80%, 95%, 70%, and FWHMs of 35, 20, and 18 nm for red, green, and blue emissions. As to the origins, the observed 40 meV exciton binding energy, halogen self-passivation effect, and CsPbX3@X quantum-well band alignment are proposed to guarantee the excitons generation and high-rate radiative recombination at RT. Moreover, such superior optical merits endow them with promising potentials in lighting and displays, which are primarily demonstrated by the white light-emitting diodes with tunable color temperature and wide color gamut.

1,932 citations

Journal ArticleDOI
TL;DR: Perovskite quantum wells yield highly efficient LEDs spanning the visible and near-infrared as discussed by the authors. But their performance is not as good as those of traditional LEDs, and their lifetime is shorter.
Abstract: Perovskite quantum wells yield highly efficient LEDs spanning the visible and near-infrared.

1,419 citations

Journal ArticleDOI
01 Oct 2018-Nature
TL;DR: The formation of submicrometre-scale structure in perovskite light-emitting diodes can raise their external quantum efficiency beyond 20%, suggesting the possibility of both high efficiency and high brightness.
Abstract: Light-emitting diodes (LEDs), which convert electricity to light, are widely used in modern society—for example, in lighting, flat-panel displays, medical devices and many other situations. Generally, the efficiency of LEDs is limited by nonradiative recombination (whereby charge carriers recombine without releasing photons) and light trapping1–3. In planar LEDs, such as organic LEDs, around 70 to 80 per cent of the light generated from the emitters is trapped in the device4,5, leaving considerable opportunity for improvements in efficiency. Many methods, including the use of diffraction gratings, low-index grids and buckling patterns, have been used to extract the light trapped in LEDs6–9. However, these methods usually involve complicated fabrication processes and can distort the light-output spectrum and directionality6,7. Here we demonstrate efficient and high-brightness electroluminescence from solution-processed perovskites that spontaneously form submicrometre-scale structures, which can efficiently extract light from the device and retain wavelength- and viewing-angle-independent electroluminescence. These perovskites are formed simply by introducing amino-acid additives into the perovskite precursor solutions. Moreover, the additives can effectively passivate perovskite surface defects and reduce nonradiative recombination. Perovskite LEDs with a peak external quantum efficiency of 20.7 per cent (at a current density of 18 milliamperes per square centimetre) and an energy-conversion efficiency of 12 per cent (at a high current density of 100 milliamperes per square centimetre) can be achieved—values that approach those of the best-performing organic LEDs. The formation of submicrometre-scale structure in perovskite light-emitting diodes can raise their external quantum efficiency beyond 20%, suggesting the possibility of both high efficiency and high brightness.

1,404 citations