scispace - formally typeset
Search or ask a question
Author

Hyeon Suk Shin

Bio: Hyeon Suk Shin is an academic researcher from Ulsan National Institute of Science and Technology. The author has contributed to research in topics: Graphene & Chemical vapor deposition. The author has an hindex of 56, co-authored 158 publications receiving 18304 citations. Previous affiliations of Hyeon Suk Shin include Pohang University of Science and Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: This Review describes how the tunable electronic structure of TMDs makes them attractive for a variety of applications, as well as electrically active materials in opto-electronics.
Abstract: Ultrathin two-dimensional nanosheets of layered transition metal dichalcogenides (TMDs) are fundamentally and technologically intriguing. In contrast to the graphene sheet, they are chemically versatile. Mono- or few-layered TMDs - obtained either through exfoliation of bulk materials or bottom-up syntheses - are direct-gap semiconductors whose bandgap energy, as well as carrier type (n- or p-type), varies between compounds depending on their composition, structure and dimensionality. In this Review, we describe how the tunable electronic structure of TMDs makes them attractive for a variety of applications. They have been investigated as chemically active electrocatalysts for hydrogen evolution and hydrosulfurization, as well as electrically active materials in opto-electronics. Their morphologies and properties are also useful for energy storage applications such as electrodes for Li-ion batteries and supercapacitors.

7,903 citations

Journal ArticleDOI
06 Mar 2019-Nature
TL;DR: It is demonstrated that excitonic bands in MoSe2/WS2 heterostructures can hybridize, resulting in a resonant enhancement of moiré superlattice effects, which underpin strategies for band-structure engineering in semiconductor devices based on van der Waals heterostructure.
Abstract: Atomically thin layers of two-dimensional materials can be assembled in vertical stacks that are held together by relatively weak van der Waals forces, enabling coupling between monolayer crystals with incommensurate lattices and arbitrary mutual rotation1,2. Consequently, an overarching periodicity emerges in the local atomic registry of the constituent crystal structures, which is known as a moire superlattice3. In graphene/hexagonal boron nitride structures4, the presence of a moire superlattice can lead to the observation of electronic minibands5–7, whereas in twisted graphene bilayers its effects are enhanced by interlayer resonant conditions, resulting in a superconductor–insulator transition at magic twist angles8. Here, using semiconducting heterostructures assembled from incommensurate molybdenum diselenide (MoSe2) and tungsten disulfide (WS2) monolayers, we demonstrate that excitonic bands can hybridize, resulting in a resonant enhancement of moire superlattice effects. MoSe2 and WS2 were chosen for the near-degeneracy of their conduction-band edges, in order to promote the hybridization of intra- and interlayer excitons. Hybridization manifests through a pronounced exciton energy shift as a periodic function of the interlayer rotation angle, which occurs as hybridized excitons are formed by holes that reside in MoSe2 binding to a twist-dependent superposition of electron states in the adjacent monolayers. For heterostructures in which the monolayer pairs are nearly aligned, resonant mixing of the electron states leads to pronounced effects of the geometrical moire pattern of the heterostructure on the dispersion and optical spectra of the hybridized excitons. Our findings underpin strategies for band-structure engineering in semiconductor devices based on van der Waals heterostructures9. Excitonic bands in MoSe2/WS2 heterostructures can hybridize, resulting in a resonant enhancement of moire superlattice effects.

667 citations

Journal ArticleDOI
TL;DR: This work reports a high-yield exfoliation process using lithium, potassium and sodium naphthalenide where an intermediate ternary Li(x)MX(n) crystalline phase (X=selenium, sulphur, and so on) is produced.
Abstract: Transition-metal dichalcogenides like molybdenum disulphide have attracted great interest as two-dimensional materials beyond graphene due to their unique electronic and optical properties. Solution-phase processes can be a viable method for producing printable single-layer chalcogenides. Molybdenum disulphide can be exfoliated into monolayer flakes using organolithium reduction chemistry; unfortunately, the method is hampered by low yield, submicron flake size and long lithiation time. Here we report a high-yield exfoliation process using lithium, potassium and sodium naphthalenide where an intermediate ternary Li(x)MX(n) crystalline phase (X=selenium, sulphur, and so on) is produced. Using a two-step expansion and intercalation method, we produce high-quality single-layer molybdenum disulphide sheets with unprecedentedly large flake size, that is up to 400 μm(2). Single-layer dichalcogenide inks prepared by this method may be directly inkjet-printed on a wide range of substrates.

659 citations

Journal ArticleDOI
23 Sep 2016-Science
TL;DR: A simple, rapid method to reduce GO into pristine graphene using 1- to 2-second pulses of microwaves is reported using microwave-reduced GO (MW- rGO) as the channel material and into particularly high activity for MW-rGO catalyst support toward oxygen evolution reactions.
Abstract: Efficient exfoliation of graphite in solutions to obtain high-quality graphene flakes is desirable for printable electronics, catalysis, energy storage, and composites. Graphite oxide with large lateral dimensions has an exfoliation yield of ~100%, but it has not been possible to completely remove the oxygen functional groups so that the reduced form of graphene oxide (GO; reduced form: rGO) remains a highly disordered material. Here we report a simple, rapid method to reduce GO into pristine graphene using 1- to 2-second pulses of microwaves. The desirable structural properties are translated into mobility values of >1000 square centimeters per volt per second in field-effect transistors with microwave-reduced GO (MW-rGO) as the channel material and into particularly high activity for MW-rGO catalyst support toward oxygen evolution reactions.

640 citations

Journal ArticleDOI
TL;DR: A general "silica-protective-layer-assisted" approach that can preferentially generate the catalytically active Fe-Nx sites in Fe-n/C catalysts while suppressing the formation of large Fe-based particles is reported.
Abstract: Iron–nitrogen on carbon (Fe–N/C) catalysts have emerged as promising nonprecious metal catalysts (NPMCs) for oxygen reduction reaction (ORR) in energy conversion and storage devices. It has been widely suggested that an active site structure for Fe–N/C catalysts contains Fe–Nx coordination. However, the preparation of high-performance Fe–N/C catalysts mostly involves a high-temperature pyrolysis step, which generates not only catalytically active Fe–Nx sites, but also less active large iron-based particles. Herein, we report a general “silica-protective-layer-assisted” approach that can preferentially generate the catalytically active Fe–Nx sites in Fe–N/C catalysts while suppressing the formation of large Fe-based particles. The catalyst preparation consisted of an adsorption of iron porphyrin precursor on carbon nanotube (CNT), silica layer overcoating, high-temperature pyrolysis, and silica layer etching, which yielded CNTs coated with thin layer of porphyrinic carbon (CNT/PC) catalysts. Temperature-co...

606 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Approaches to Modifying the Electronic Band Structure for Visible-Light Harvesting and its Applications d0 Metal Oxide Photocatalysts 6518 4.4.1.
Abstract: 2.3. Evaluation of Photocatalytic Water Splitting 6507 2.3.1. Photocatalytic Activity 6507 2.3.2. Photocatalytic Stability 6507 3. UV-Active Photocatalysts for Water Splitting 6507 3.1. d0 Metal Oxide Photocatalyts 6507 3.1.1. Ti-, Zr-Based Oxides 6507 3.1.2. Nb-, Ta-Based Oxides 6514 3.1.3. W-, Mo-Based Oxides 6517 3.1.4. Other d0 Metal Oxides 6518 3.2. d10 Metal Oxide Photocatalyts 6518 3.3. f0 Metal Oxide Photocatalysts 6518 3.4. Nonoxide Photocatalysts 6518 4. Approaches to Modifying the Electronic Band Structure for Visible-Light Harvesting 6519

6,332 citations

Journal ArticleDOI
TL;DR: This review highlights the recent research efforts toward the synthesis of noble metal-free electrocatalysts, especially at the nanoscale, and their catalytic properties for the hydrogen evolution reaction (HER), and summarizes some important examples showing that non-Pt HER electrocatsalysts could serve as efficient cocatalysts for promoting direct solar-to-hydrogen conversion in both photochemical and photoelectrochemical water splitting systems, when combined with suitable semiconductor photocatalyst.
Abstract: Sustainable hydrogen production is an essential prerequisite of a future hydrogen economy. Water electrolysis driven by renewable resource-derived electricity and direct solar-to-hydrogen conversion based on photochemical and photoelectrochemical water splitting are promising pathways for sustainable hydrogen production. All these techniques require, among many things, highly active noble metal-free hydrogen evolution catalysts to make the water splitting process more energy-efficient and economical. In this review, we highlight the recent research efforts toward the synthesis of noble metal-free electrocatalysts, especially at the nanoscale, and their catalytic properties for the hydrogen evolution reaction (HER). We review several important kinds of heterogeneous non-precious metal electrocatalysts, including metal sulfides, metal selenides, metal carbides, metal nitrides, metal phosphides, and heteroatom-doped nanocarbons. In the discussion, emphasis is given to the synthetic methods of these HER electrocatalysts, the strategies of performance improvement, and the structure/composition-catalytic activity relationship. We also summarize some important examples showing that non-Pt HER electrocatalysts could serve as efficient cocatalysts for promoting direct solar-to-hydrogen conversion in both photochemical and photoelectrochemical water splitting systems, when combined with suitable semiconductor photocatalysts.

4,351 citations

Journal ArticleDOI
TL;DR: The emphasis of this review is on the origin of the electrocatalytic activity of nanostructured catalysts toward a series of key clean energy conversion reactions by correlating the apparent electrode performance with their intrinsic electrochemical properties.
Abstract: A fundamental change has been achieved in understanding surface electrochemistry due to the profound knowledge of the nature of electrocatalytic processes accumulated over the past several decades and to the recent technological advances in spectroscopy and high resolution imaging. Nowadays one can preferably design electrocatalysts based on the deep theoretical knowledge of electronic structures, via computer-guided engineering of the surface and (electro)chemical properties of materials, followed by the synthesis of practical materials with high performance for specific reactions. This review provides insights into both theoretical and experimental electrochemistry toward a better understanding of a series of key clean energy conversion reactions including oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). The emphasis of this review is on the origin of the electrocatalytic activity of nanostructured catalysts toward the aforementioned reactions by correlating the apparent electrode performance with their intrinsic electrochemical properties. Also, a rational design of electrocatalysts is proposed starting from the most fundamental aspects of the electronic structure engineering to a more practical level of nanotechnological fabrication.

3,918 citations