scispace - formally typeset
Search or ask a question
Author

Hyeongwoo Kim

Bio: Hyeongwoo Kim is an academic researcher from Max Planck Society. The author has contributed to research in topics: Rendering (computer graphics) & Autoencoder. The author has an hindex of 12, co-authored 20 publications receiving 1631 citations.

Papers
More filters
Journal ArticleDOI
30 Jul 2018
TL;DR: In this paper, a generative neural network with a novel space-time architecture is proposed to transfer the full 3D head position, head rotation, face expression, eye gaze, and eye blinking from a source actor to a portrait video of a target actor.
Abstract: We present a novel approach that enables photo-realistic re-animation of portrait videos using only an input video. In contrast to existing approaches that are restricted to manipulations of facial expressions only, we are the first to transfer the full 3D head position, head rotation, face expression, eye gaze, and eye blinking from a source actor to a portrait video of a target actor. The core of our approach is a generative neural network with a novel space-time architecture. The network takes as input synthetic renderings of a parametric face model, based on which it predicts photo-realistic video frames for a given target actor. The realism in this rendering-to-video transfer is achieved by careful adversarial training, and as a result, we can create modified target videos that mimic the behavior of the synthetically-created input. In order to enable source-to-target video re-animation, we render a synthetic target video with the reconstructed head animation parameters from a source video, and feed it into the trained network - thus taking full control of the target. With the ability to freely recombine source and target parameters, we are able to demonstrate a large variety of video rewrite applications without explicitly modeling hair, body or background. For instance, we can reenact the full head using interactive user-controlled editing, and realize high-fidelity visual dubbing. To demonstrate the high quality of our output, we conduct an extensive series of experiments and evaluations, where for instance a user study shows that our video edits are hard to detect.

611 citations

Posted Content
TL;DR: A novel model-based deep convolutional autoencoder that addresses the highly challenging problem of reconstructing a 3D human face from a single in-the-wild color image and can be trained end-to-end in an unsupervised manner, which renders training on very large real world data feasible.
Abstract: In this work we propose a novel model-based deep convolutional autoencoder that addresses the highly challenging problem of reconstructing a 3D human face from a single in-the-wild color image. To this end, we combine a convolutional encoder network with an expert-designed generative model that serves as decoder. The core innovation is our new differentiable parametric decoder that encapsulates image formation analytically based on a generative model. Our decoder takes as input a code vector with exactly defined semantic meaning that encodes detailed face pose, shape, expression, skin reflectance and scene illumination. Due to this new way of combining CNN-based with model-based face reconstruction, the CNN-based encoder learns to extract semantically meaningful parameters from a single monocular input image. For the first time, a CNN encoder and an expert-designed generative model can be trained end-to-end in an unsupervised manner, which renders training on very large (unlabeled) real world data feasible. The obtained reconstructions compare favorably to current state-of-the-art approaches in terms of quality and richness of representation.

355 citations

Proceedings ArticleDOI
01 Oct 2017
TL;DR: A novel model-based deep convolutional autoencoder that addresses the highly challenging problem of reconstructing a 3D human face from a single in-the-wild color image and can be trained end-to-end in an unsupervised manner, which renders training on very large real world data feasible.
Abstract: In this work we propose a novel model-based deep convolutional autoencoder that addresses the highly challenging problem of reconstructing a 3D human face from a single in-the-wild color image. To this end, we combine a convolutional encoder network with an expert-designed generative model that serves as decoder. The core innovation is the differentiable parametric decoder that encapsulates image formation analytically based on a generative model. Our decoder takes as input a code vector with exactly defined semantic meaning that encodes detailed face pose, shape, expression, skin reflectance and scene illumination. Due to this new way of combining CNN-based with model-based face reconstruction, the CNN-based encoder learns to extract semantically meaningful parameters from a single monocular input image. For the first time, a CNN encoder and an expert-designed generative model can be trained end-to-end in an unsupervised manner, which renders training on very large (unlabeled) real world data feasible. The obtained reconstructions compare favorably to current state-of-the-art approaches in terms of quality and richness of representation.

316 citations

Proceedings ArticleDOI
18 Jun 2018
TL;DR: This first approach that jointly learns a regressor for face shape, expression, reflectance and illumination on the basis of a concurrently learned parametric face model is presented, which compares favorably to the state-of-the-art in terms of reconstruction quality, better generalizes to real world faces, and runs at over 250 Hz.
Abstract: The reconstruction of dense 3D models of face geometry and appearance from a single image is highly challenging and ill-posed. To constrain the problem, many approaches rely on strong priors, such as parametric face models learned from limited 3D scan data. However, prior models restrict generalization of the true diversity in facial geometry, skin reflectance and illumination. To alleviate this problem, we present the first approach that jointly learns 1) a regressor for face shape, expression, reflectance and illumination on the basis of 2) a concurrently learned parametric face model. Our multi-level face model combines the advantage of 3D Morphable Models for regularization with the out-of-space generalization of a learned corrective space. We train end-to-end on in-the-wild images without dense annotations by fusing a convolutional encoder with a differentiable expert-designed renderer and a self-supervised training loss, both defined at multiple detail levels. Our approach compares favorably to the state-of-the-art in terms of reconstruction quality, better generalizes to real world faces, and runs at over 250 Hz.

275 citations

Journal ArticleDOI
TL;DR: In this paper, a method for generating video-realistic animations of real humans under user control is proposed, which relies on a video sequence in conjunction with a controllable 3D template model of the person.
Abstract: We propose a method for generating video-realistic animations of real humans under user control. In contrast to conventional human character rendering, we do not require the availability of a production-quality photo-realistic three-dimensional (3D) model of the human but instead rely on a video sequence in conjunction with a (medium-quality) controllable 3D template model of the person. With that, our approach significantly reduces production cost compared to conventional rendering approaches based on production-quality 3D models and can also be used to realistically edit existing videos. Technically, this is achieved by training a neural network that translates simple synthetic images of a human character into realistic imagery. For training our networks, we first track the 3D motion of the person in the video using the template model and subsequently generate a synthetically rendered version of the video. These images are then used to train a conditional generative adversarial network that translates synthetic images of the 3D model into realistic imagery of the human. We evaluate our method for the reenactment of another person that is tracked to obtain the motion data, and show video results generated from artist-designed skeleton motion. Our results outperform the state of the art in learning-based human image synthesis.

134 citations


Cited by
More filters
Proceedings Article
01 Jan 1999

2,010 citations

Proceedings ArticleDOI
25 Jan 2019
TL;DR: In this paper, the realism of state-of-the-art image manipulations, and how difficult it is to detect them, either automatically or by humans, is examined.
Abstract: The rapid progress in synthetic image generation and manipulation has now come to a point where it raises significant concerns for the implications towards society. At best, this leads to a loss of trust in digital content, but could potentially cause further harm by spreading false information or fake news. This paper examines the realism of state-of-the-art image manipulations, and how difficult it is to detect them, either automatically or by humans. To standardize the evaluation of detection methods, we propose an automated benchmark for facial manipulation detection. In particular, the benchmark is based on Deep-Fakes, Face2Face, FaceSwap and NeuralTextures as prominent representatives for facial manipulations at random compression level and size. The benchmark is publicly available and contains a hidden test set as well as a database of over 1.8 million manipulated images. This dataset is over an order of magnitude larger than comparable, publicly available, forgery datasets. Based on this data, we performed a thorough analysis of data-driven forgery detectors. We show that the use of additional domain-specific knowledge improves forgery detection to unprecedented accuracy, even in the presence of strong compression, and clearly outperforms human observers.

917 citations

Posted Content
TL;DR: This paper proposes an automated benchmark for facial manipulation detection, and shows that the use of additional domain-specific knowledge improves forgery detection to unprecedented accuracy, even in the presence of strong compression, and clearly outperforms human observers.
Abstract: The rapid progress in synthetic image generation and manipulation has now come to a point where it raises significant concerns for the implications towards society. At best, this leads to a loss of trust in digital content, but could potentially cause further harm by spreading false information or fake news. This paper examines the realism of state-of-the-art image manipulations, and how difficult it is to detect them, either automatically or by humans. To standardize the evaluation of detection methods, we propose an automated benchmark for facial manipulation detection. In particular, the benchmark is based on DeepFakes, Face2Face, FaceSwap and NeuralTextures as prominent representatives for facial manipulations at random compression level and size. The benchmark is publicly available and contains a hidden test set as well as a database of over 1.8 million manipulated images. This dataset is over an order of magnitude larger than comparable, publicly available, forgery datasets. Based on this data, we performed a thorough analysis of data-driven forgery detectors. We show that the use of additional domainspecific knowledge improves forgery detection to unprecedented accuracy, even in the presence of strong compression, and clearly outperforms human observers.

737 citations

Journal ArticleDOI
TL;DR: This work proposes Neural Textures, which are learned feature maps that are trained as part of the scene capture process that can be utilized to coherently re-render or manipulate existing video content in both static and dynamic environments at real-time rates.
Abstract: The modern computer graphics pipeline can synthesize images at remarkable visual quality; however, it requires well-defined, high-quality 3D content as input. In this work, we explore the use of imperfect 3D content, for instance, obtained from photo-metric reconstructions with noisy and incomplete surface geometry, while still aiming to produce photo-realistic (re-)renderings. To address this challenging problem, we introduce Deferred Neural Rendering, a new paradigm for image synthesis that combines the traditional graphics pipeline with learnable components. Specifically, we propose Neural Textures, which are learned feature maps that are trained as part of the scene capture process. Similar to traditional textures, neural textures are stored as maps on top of 3D mesh proxies; however, the high-dimensional feature maps contain significantly more information, which can be interpreted by our new deferred neural rendering pipeline. Both neural textures and deferred neural renderer are trained end-to-end, enabling us to synthesize photo-realistic images even when the original 3D content was imperfect. In contrast to traditional, black-box 2D generative neural networks, our 3D representation gives us explicit control over the generated output, and allows for a wide range of application domains. For instance, we can synthesize temporally-consistent video re-renderings of recorded 3D scenes as our representation is inherently embedded in 3D space. This way, neural textures can be utilized to coherently re-render or manipulate existing video content in both static and dynamic environments at real-time rates. We show the effectiveness of our approach in several experiments on novel view synthesis, scene editing, and facial reenactment, and compare to state-of-the-art approaches that leverage the standard graphics pipeline as well as conventional generative neural networks.

734 citations