scispace - formally typeset
Search or ask a question
Author

Hyukho Kwon

Bio: Hyukho Kwon is an academic researcher from Yonsei University. The author has contributed to research in topics: Pressure sensor & Dimple. The author has an hindex of 4, co-authored 6 publications receiving 778 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A flexible and sensitive textile-based pressure sensor is developed using highly conductive fibers coated with dielectric rubber materials that exhibits superior sensitivity, very fast response time, and high stability when applied to make smart gloves and clothes that can control machines wirelessly as human-machine interfaces.
Abstract: A flexible and sensitive textile-based pressure sensor is developed using highly conductive fibers coated with dielectric rubber materials. The pressure sensor exhibits superior sensitivity, very fast response time, and high stability, compared with previous textile-based pressure sensors. By using a weaving method, the pressure sensor can be applied to make smart gloves and clothes that can control machines wirelessly as human-machine interfaces.

884 citations

Journal ArticleDOI
TL;DR: A novel and facile method to control the local water adhesion force of a thin and stretchable superhydrophobic polydimethylsiloxane (PDMS) substrate with micro-pillar arrays that allows the individual manipulation of droplet motions including moving, merging and mixing is developed.
Abstract: Here, we developed a novel and facile method to control the local water adhesion force of a thin and stretchable superhydrophobic polydimethylsiloxane (PDMS) substrate with micro-pillar arrays that allows the individual manipulation of droplet motions including moving, merging and mixing. When a vacuum pressure was applied below the PDMS substrate, a local dimple structure was formed and the water adhesion force of structure was significantly changed owing to the dynamically varied pillar density. With the help of the lowered water adhesion force and the slope angle of the formed dimple structure, the motion of individual water droplets could be precisely controlled, which facilitated the creation of a droplet-based microfluidic platform capable of a programmable manipulation of droplets. We showed that the platform could be used in newer and emerging microfluidic operations such as surface-enhanced Raman spectroscopy with extremely high sensing capability (10−15 M) and in vitro small interfering RNA transfection with enhanced transfection efficiency of ~80%.

67 citations

Journal ArticleDOI
TL;DR: In this article, using ultrafast optical-pump and terahertz-probe spectroscopy, the Auger scattering significantly reduces the trap-mediated decay process of nanowires.
Abstract: The surface-trap mediated carrier recombination is a crucial feature in characterizing the optoelectronic properties of nanowires (NWs) Due to the one-dimensional characteristics, the photoexcited carriers experiences multiple carrier interactions in the transverse direction such that strong carrier-carrier interactions are expected to play an important role in the NW carrier recombination Here, using ultrafast optical-pump and terahertz-probe spectroscopy, we show that the Auger scattering significantly reduces the trap-mediated decay process Systematic studies on bulk Si, bundled, individual, and encapsulated (reduced surface-trap density) SiNWs reveal that the effect of Auger recombination exhibits strong pump-fluence dependence depending on the surface-treatment condition

5 citations

Patent
05 May 2016
TL;DR: In this paper, a conductive yarn, which is a yarn-based pressure sensor, and a method for producing them is described, where the yarn is made by coating a fiber with a flexible polymer and forming metallic nanoparticles in the flexible polymer.
Abstract: A conductive yarn, a conductive yarn-based pressure sensor, and method for producing them are provided. A high-performance conductive yarn is produced by coating a fiber with a flexible polymer and by forming metallic nanoparticles in the flexible polymer. A high-performance conductive yarn-based pressure is produced by coating the high-performance conductive yarn with a dielectric elastomer and by arranging the conductive yarns in intersectional pattern.

2 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The latest successful examples of flexible and stretchable physical sensors for the detection of temperature, pressure, and strain, as well as their novel structures, technological innovations, and challenges, are reviewed.
Abstract: Flexible and stretchable physical sensors that can measure and quantify electrical signals generated by human activities are attracting a great deal of attention as they have unique characteristics, such as ultrathinness, low modulus, light weight, high flexibility, and stretchability. These flexible and stretchable physical sensors conformally attached on the surface of organs or skin can provide a new opportunity for human-activity monitoring and personal healthcare. Consequently, in recent years there has been considerable research effort devoted to the development of flexible and stretchable physical sensors to fulfill the requirements of future technology, and much progress has been achieved. Here, the most recent developments of flexible and stretchable physical sensors are described, including temperature, pressure, and strain sensors, and flexible and stretchable sensor-integrated platforms. The latest successful examples of flexible and stretchable physical sensors for the detection of temperature, pressure, and strain, as well as their novel structures, technological innovations, and challenges, are reviewed first. In the next section, recent progress regarding sensor-integrated wearable platforms is overviewed in detail. Some of the latest achievements regarding self-powered sensor-integrated wearable platform technologies are also reviewed. Further research direction and challenges are also proposed to develop a fully sensor-integrated wearable platform for monitoring human activity and personal healthcare in the near future.

1,469 citations

Journal ArticleDOI
Chunya Wang1, Kailun Xia1, Huimin Wang1, Xiaoping Liang1, Zhe Yin1, Yingying Zhang1 
TL;DR: The latest advances in the rational design and controlled fabrication of carbon materials toward applications in flexible and wearable electronics are reviewed and various carbon materials with controlled micro/nanostructures and designed macroscopic morphologies for high-performance flexible electronics are introduced.
Abstract: Flexible and wearable electronics are attracting wide attention due to their potential applications in wearable human health monitoring and care systems. Carbon materials have combined superiorities such as good electrical conductivity, intrinsic and structural flexibility, light weight, high chemical and thermal stability, ease of chemical functionalization, as well as potential mass production, enabling them to be promising candidate materials for flexible and wearable electronics. Consequently, great efforts are devoted to the controlled fabrication of carbon materials with rationally designed structures for applications in next-generation electronics. Herein, the latest advances in the rational design and controlled fabrication of carbon materials toward applications in flexible and wearable electronics are reviewed. Various carbon materials (carbon nanotubes, graphene, natural-biomaterial-derived carbon, etc.) with controlled micro/nanostructures and designed macroscopic morphologies for high-performance flexible electronics are introduced. The fabrication strategies, working mechanism, performance, and applications of carbon-based flexible devices are reviewed and discussed, including strain/pressure sensors, temperature/humidity sensors, electrochemical sensors, flexible conductive electrodes/wires, and flexible power devices. Furthermore, the integration of multiple devices toward multifunctional wearable systems is briefly reviewed. Finally, the existing challenges and future opportunities in this field are summarized.

751 citations

Journal ArticleDOI
TL;DR: This article reviews and highlights recent advances in wearable and flexible sensors toward continuous and non-invasive molecular analysis in sweat, tears, saliva, interstitial fluid, blood, wound exudate as well as exhaled breath.
Abstract: Wearable biosensors have received tremendous attention over the past decade owing to their great potential in predictive analytics and treatment toward personalized medicine. Flexible electronics could serve as an ideal platform for personalized wearable devices because of their unique properties such as light weight, low cost, high flexibility and great conformability. Unlike most reported flexible sensors that mainly track physical activities and vital signs, the new generation of wearable and flexible chemical sensors enables real-time, continuous and fast detection of accessible biomarkers from the human body, and allows for the collection of large-scale information about the individual's dynamic health status at the molecular level. In this article, we review and highlight recent advances in wearable and flexible sensors toward continuous and non-invasive molecular analysis in sweat, tears, saliva, interstitial fluid, blood, wound exudate as well as exhaled breath. The flexible platforms, sensing mechanisms, and device and system configurations employed for continuous monitoring are summarized. We also discuss the key challenges and opportunities of the wearable and flexible chemical sensors that lie ahead.

743 citations

Journal ArticleDOI
TL;DR: In this paper, an adhesive and conductive hydrogel is developed with long-lasting moisture lock-in capability and extreme temperature tolerance, which is formed in a binary-solvent system composed of water and glycerol.
Abstract: Conductive hydrogels are a promising class of materials to design bioelectronics for new technological interfaces with human body, which are required to work for a long-term or under extreme environment. Traditional hydrogels are limited in short-term usage under room temperature, as it is difficult to retain water under cold or hot environment. Inspired by the antifreezing/antiheating behaviors from nature, and based on mussel chemistry, an adhesive and conductive hydrogel is developed with long-lasting moisture lock-in capability and extreme temperature tolerance, which is formed in a binary-solvent system composed of water and glycerol. Polydopamine (PDA)-decorated carbon nanotubes (CNTs) are incorporated into the hydrogel, which assign conductivity to the hydrogel and serve as nanoreinforcements to enhance the mechanical properties of the hydrogel. The catechol groups on PDA and viscous glycerol endow the hydrogel with high tissue adhesiveness. Particularly, the hydrogel is thermal tolerant to maintain all the properties under extreme wide tempreature spectrum (−20 or 60 °C) or stored for a long term. In summary, this mussel-inspired hydrogel is a promising material for self-adhesive bioelectronics to detect biosignals in cold or hot environments, and also as a dressing to protect skin from injuries related to frostbites or burns.

695 citations

Journal ArticleDOI
TL;DR: A deeper understanding of the fundamental challenges faced for wearable sensors and of the state-of-the-art for wearable sensor technology, the roadmap becomes clearer for creating the next generation of innovations and breakthroughs.
Abstract: Wearable sensors have recently seen a large increase in both research and commercialization. However, success in wearable sensors has been a mix of both progress and setbacks. Most of commercial progress has been in smart adaptation of existing mechanical, electrical and optical methods of measuring the body. This adaptation has involved innovations in how to miniaturize sensing technologies, how to make them conformal and flexible, and in the development of companion software that increases the value of the measured data. However, chemical sensing modalities have experienced greater challenges in commercial adoption, especially for non-invasive chemical sensors. There have also been significant challenges in making significant fundamental improvements to existing mechanical, electrical, and optical sensing modalities, especially in improving their specificity of detection. Many of these challenges can be understood by appreciating the body's surface (skin) as more of an information barrier than as an information source. With a deeper understanding of the fundamental challenges faced for wearable sensors and of the state-of-the-art for wearable sensor technology, the roadmap becomes clearer for creating the next generation of innovations and breakthroughs.

680 citations