scispace - formally typeset
Search or ask a question
Author

Hyun-Jin Kim

Bio: Hyun-Jin Kim is an academic researcher. The author has contributed to research in topics: Medicine & Inflammation. The author has an hindex of 2, co-authored 7 publications receiving 7 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper , the small heterodimer partner-interacting leucine zipper protein (SMILE) was shown to be a corepressor for melanogenesis in human melanoma.
Abstract: SMILE (small heterodimer partner-interacting leucine zipper protein) is a transcriptional corepressor that potently regulates various cellular processes such as metabolism and growth in numerous tissues. However, its regulatory role in skin tissue remains uncharacterized. Here, we demonstrated that SMILE expression markedly decreased in human melanoma biopsy specimens and was inversely correlated with that of microphthalmia-associated transcription factor (MITF). During melanogenesis, α-melanocyte-stimulating hormone (α-MSH) induction of MITF was mediated by a decrease in SMILE expression in B16F10 mouse melanoma cells. Mechanistically, SMILE was regulated by α-MSH/cAMP/protein kinase A signaling and suppressed MITF promoter activity via corepressing transcriptional activity of the cAMP response element-binding protein. Moreover, SMILE overexpression significantly reduced α-MSH-induced MITF and melanogenic genes, thereby inhibiting melanin production in melanocytes. Conversely, SMILE inhibition increased the transcription of melanogenic genes and melanin contents. These results indicate that SMILE is a downstream effector of cAMP-mediated signaling and is a critical factor in the regulation of melanogenic transcription; in addition, they suggest a potential role of SMILE as a corepressor in skin pigmentation.

2 citations

Journal ArticleDOI
TL;DR: In this paper , the authors showed that efferocytosis induced by apoptotic cell instillation and enhanced formyl peptide receptor 2 (FPR2) expression attenuate RILI, thereby alleviating lung inflammation and fibrosis.

2 citations

Journal ArticleDOI
TL;DR: It is suggested that the CLE administration be the effective approach for treating or preventing chronic pulmonary diseases such as COPD induced by CS.
Abstract: Cigarette smoke (CS) is the major factor in the development of chronic obstructive pulmonary disease (COPD), the third leading cause of death worldwide. Furthermore, although Camellia sinensis (CN) has been known as an anti-inflammatory material, the effect of CN has not yet been known on pulmonary inflammation in COPD. Thus, we investigated the protective effects of Camellia sinensis L. extract (CLE) against pulmonary inflammation in porcine pancreas elastase (PPE) and a cigarette smoke extract (CSE)-induced COPD mouse model. Oral administration of CLE suppressed the symptoms such as infiltration of immune cells, cytokines/chemokines secretion, mucus hypersecretion, and injuries of the lung parenchyma. Increased inflammatory responses in COPD are mediated by various immune cells such as airway epithelial cells, neutrophils, and alveolar macrophages. Thus, we investigated the effect and mechanisms of CLE in H292, HL-60, and MH-S cells. The CLE inhibited the expression of IL-6, IL-8, MUC5AC and MUC5B on CSE/LPS-stimulated H292 cells and also suppressed the formation of neutrophil extracellular traps and secretion of neutrophil elastase by inhibiting reactive oxygen species in PMA-induced HL-60 cells. In particular, the CLE suppressed the release of cytokines and chemokines caused by activating the nuclear factor kappa-light-chain-enhancer of activated B via the activation of nuclear factor erythroid-2-related factor 2 and the heme oxygenase-1 pathway in CSE/LPS-stimulated MH-S cells. Therefore, we suggest that the CLE administration be the effective approach for treating or preventing chronic pulmonary diseases such as COPD induced by CS.

2 citations

Journal ArticleDOI
TL;DR: In this paper , the authors investigated the role of ADAMTS3 in GSC proliferation and self-renewal activities and tumorigenesis in orthotopic xenograft models.
Abstract: Glioblastoma multiforme (GBM) is the most aggressive type of human brain tumor, with a poor prognosis and a median overall survival of fewer than 15 months. Glioma stem cells (GSCs) have recently been identified as a key player in tumor initiation and therapeutic resistance in GBM. ADAMTS family of metalloproteinases is known to cleave a wide range of extracellular matrix substrates and has been linked to tissue remodeling events in tumor development. Here, we investigate that ADAMTS3 regulates GSC proliferation and self‐renewal activities, and tumorigenesis in orthotopic xenograft models.

1 citations

Journal ArticleDOI
TL;DR: In this article , the effects of 7β-22 dihydroxyhopane (AP 18), isolated from the sub-Antarctic lichen, Pseudocyphellaria freycinetii, were examined.
Abstract: Background Glioma stem cells (GSCs) have been reported to contribute to tumor initiation and relapse, therapy resistance, and intra-tumoral heterogeneity of glioblastoma multiforme. Therefore, inhibiting GSCs presents a critical therapeutic tactic to suppress the aggressiveness of tumors. Methods In this study, we examined the effects of 7β-22 dihydroxyhopane (AP 18), isolated from the sub-Antarctic lichen, Pseudocyphellaria freycinetii. The cytotoxic effect of AP 18 and its effects on cell proliferation were assessed by alamarBlue assay and 5-ethynyl-2′-deoxyuridine (EdU) assay. Real-time confluence analysis was performed with a Celloger automatic live cell imaging system. Western Blotting and 3-D optical diffraction tomography (ODT) imaging were performed to determine whether apoptosis was triggered by AP 18. A Limiting dilution assay and qRT-PCR were performed to investigate the impact of AP 18 on GSC stemness. Results AP 18 significantly reduced GSCs viability and proliferation, inducing programmed cell death identified by Annexin V/PI staining and had effects on morphologic features determined by 3-D ODT. Interestingly, treatment with AP 18 suppressed stemness features. Conclusion Taken together, our results suggest that AP 18 might be a potential therapeutic agent to target GSCs.

Cited by
More filters
Journal ArticleDOI
TL;DR: The results indicated that AD-1 could alleviate PF both in vitro and in vivo, and the underlying mechanism may be related to the decrease in ECM deposition and inflammation, the enhancement of antioxidant capacity and the mediation of lung cell apoptosis and the TGF-β1/TIMP-1/α-SMA signaling pathway, which provide a theoretical basis for the rehabilitation treatment of PF.
Abstract: 20(R)-25-methoxyl-dammarane-3β,12β,20-triol (25-OCH3-PPD, AD-1) is a dammarane ginsenoside that is isolated from Panax notoginseng. The present study aimed to explore its anti-pulmonary fibrosis (PF) effect in vitro and in vivo. L929 cells were treated with 10 μg mL-1 lipopolysaccharide (LPS) to establish a PF model in vitro and mice were administered with 3.5 mg kg-1 bleomycin (BLM) by endotracheal intubation to establish a PF model in vivo for investigating the anti-PF effect and its potential mechanism. The results demonstrated that AD-1 reduced the injury, extracellular matrix (ECM) buildup and α-smooth muscle actin (α-SMA) protein expression levels of L929 induced by LPS. Oral administration of AD-1 downregulated the expression of interleukins (such as IL-1β, IL-6 and IL-18), increased the expression of superoxide dismutase (SOD) and glutathione (GSH), reduced the lung coefficient and the content of hydroxyproline (HYP), and mediated the Bax/Bcl-2 protein ratio and P-p53, β-catenin and SIRT3 expression in the lung tissue of mice. Furthermore, AD-1 inhibited the expression levels of TGF-β1, TIMP-1 and α-SMA and reduced inflammatory cell infiltration and collagen deposition in the lung tissue of PF mice. These results indicated that AD-1 could alleviate PF both in vitro and in vivo, and the underlying mechanism may be related to the decrease in ECM deposition and inflammation, the enhancement of antioxidant capacity, and the mediation of lung cell apoptosis and the TGF-β1/TIMP-1/α-SMA signaling pathway, which provide a theoretical basis for the rehabilitation treatment of PF.

2 citations

Journal ArticleDOI
TL;DR: In this paper , the effects of circPAPD4 overexpression on tumor progression were investigated using in vivo assays using in vitro and in vivo, which might provide novel insights into therapeutic strategies for breast cancer.
Abstract: Breast cancer (BC) negatively impacts the health of women worldwide. Circular RNAs (circRNAs) are a group of endogenous RNAs considered essential regulatory factor in BC tumorigenesis and progression. However, the underlying molecular mechanisms of circRNAs remain unclear.Expression levels of circPAPD4, miR-1269a, CREBZF, and ADAR1 in BC cell lines and tissues were measured using bioinformatics analysis, RT-qPCR, ISH, and IHC. Cell proliferation and apoptosis were measured using CCK8, EdU staining, flow cytometry, and TUNEL assays. Pearson correlation analysis, RNA pull-down, dual-luciferase reporter, and co-immunoprecipitation assays were used to explore the correlation among circPAPD4, miR-1269a, CREBZF, STAT3, and ADAR1. Effects of circPAPD4 overexpression on tumor progression were investigated using in vivo assays. Moreover, CREBZF mRNA delivered by polymeric nanoparticles (CREBZF-mRNA-NPs) was used to examine application value of our findings.CircPAPD4 expression was low in BC tissues and cells. Functionally, circPAPD4 inhibited proliferation and promoted apoptosis in vitro and in vivo. Mechanistically, circPAPD4 biogenesis was regulated by ADAR1. And circPAPD4 promoted CREBZF expression by competitively binding to miR-1269a. More importantly, CREBZF promoted circPAPD4 expression by suppressing STAT3 dimerization and ADAR1 expression, revealing a novel positive feedback loop that curbed BC progression. Systematic delivery of CREBZF-mRNA-NPs effectively induced CREBZF expression and activated the positive feedback loop of circPAPD4/miR-1269a/CREBZF/STAT3/ADAR1, which might suppress BC progression in vitro and in vivo.Our findings firstly illustrated that circPAPD4/miR-1269a/CREBZF/STAT3/ADAR1 positive feedback loop mediated BC progression, and delivering CREBZF mRNA nanoparticles suppressed BC progression in vitro and in vivo, which might provide novel insights into therapeutic strategies for breast cancer.

2 citations

Journal ArticleDOI
TL;DR: In this paper , the authors investigated the role of ADAMTS3 in GSC proliferation and self-renewal activities and tumorigenesis in orthotopic xenograft models.
Abstract: Glioblastoma multiforme (GBM) is the most aggressive type of human brain tumor, with a poor prognosis and a median overall survival of fewer than 15 months. Glioma stem cells (GSCs) have recently been identified as a key player in tumor initiation and therapeutic resistance in GBM. ADAMTS family of metalloproteinases is known to cleave a wide range of extracellular matrix substrates and has been linked to tissue remodeling events in tumor development. Here, we investigate that ADAMTS3 regulates GSC proliferation and self‐renewal activities, and tumorigenesis in orthotopic xenograft models.

1 citations

Journal ArticleDOI
TL;DR: In this article , the authors investigated the effect of fermented Lillium longiflorum thunb (LLT) bulb extract fermented with Lactobacillus acidophilus 803 in COPD mouse models induced by CSE and porcine pancreas elastase (PPE).
Abstract: Chronic obstructive pulmonary disease (COPD), one of the leading causes of death worldwide, is caused by repeated exposure to harmful matter, such as cigarette smoke. Although Lilium longiflorum Thunb (LLT) has anti-inflammatory effects, there is no report on the fermented LLT bulb extract regulating lung inflammation in COPD. Thus, we investigated the protective effect of LLT bulb extract fermented with Lactobacillus acidophilus 803 in COPD mouse models induced by cigarette smoke extract (CSE) and porcine pancreas elastase (PPE). Oral administration of the fermented product (LS803) suppressed the production of inflammatory mediators and the infiltration of immune cells involving neutrophils and macrophages, resulting in protective effects against lung damage. In addition, LS803 inhibited CSE- and LPS-induced IL-6 and IL-8 production in airway epithelial H292 cells as well as suppressed PMA-induced formation of neutrophil extracellular traps in HL-60 cells. In particular, LS803 significantly repressed the elevated IL-6 and MIP-2 production after CSE and LPS stimulation by suppressing the activity of the nuclear factor kappa-light-chain-enhancer of activated B (NFκB) in mouse peritoneal macrophages. Therefore, our results suggest that the fermented product LS803 is effective in preventing and alleviating lung inflammation.