scispace - formally typeset
Search or ask a question
Author

Hyun Min Lee

Bio: Hyun Min Lee is an academic researcher from Chung-Ang University. The author has contributed to research in topics: Higgs boson & Dark matter. The author has an hindex of 50, co-authored 175 publications receiving 8171 citations. Previous affiliations of Hyun Min Lee include Korea Institute for Advanced Study & Seoul National University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors use the power-counting formalism of effective field theory to study the size of loop corrections in theories of slow-roll inflation, with the aim of more precisely identifying the limits of validity of the usual classical inflationary treatments.
Abstract: We use the power-counting formalism of effective field theory to study the size of loop corrections in theories of slow-roll inflation, with the aim of more precisely identifying the limits of validity of the usual classical inflationary treatments. We keep our analysis as general as possible in order to systematically identify the most important corrections to the classical inflaton dynamics. Although most slow-roll models lie within the semiclassical domain, we find the consistency of the Higgs-Inflaton scenario to be more delicate due to the proximity between the Hubble scale during inflation and the upper bound allowed by unitarity on the new-physics scale associated with the breakdown of the semiclassical approximation within the effective theory. Similar remarks apply to curvature-squared inflationary models.

448 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown explicitly how unitarity problems arise in both the Einstein and Jordan frames of the theory in a covariant gauge and in a unitary gauge, where there is only a single scalar which can be redefined to achieve canonical kinetic terms.
Abstract: We rebut the recent claim (arXiv:0912.5463) that Einstein-frame scattering in the Higgs inflation model is unitary above the cut-off energy Lambda ~ Mp/xi. We show explicitly how unitarity problems arise in both the Einstein and Jordan frames of the theory. In a covariant gauge they arise from non-minimal Higgs self-couplings, which cannot be removed by field redefinitions because the target space is not flat. In unitary gauge, where there is only a single scalar which can be redefined to achieve canonical kinetic terms, the unitarity problems arise through non-minimal Higgs-gauge couplings.

331 citations

Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, S. Abdel Khalek4  +2870 moreInstitutions (169)
TL;DR: The performance of the ATLAS muon reconstruction during the LHC run withpp collisions at s=7–8 TeV in 2011–2012 is presented, focusing mainly on data collected in 2012.
Abstract: This paper presents the performance of the ATLAS muon reconstruction during the LHC run with pp collisions at root s = 7-8 TeV in 2011-2012, focusing mainly on data collected in 2012. Measurements ...

305 citations

Journal ArticleDOI
TL;DR: In this article, the authors reexamine recent claims that the scattering in the Higgs inflation model is unitary above the cut-off energy, and show explicitly how unitarity problems arise in both the Einstein and Jordan frames of the theory.
Abstract: We reexamine recent claims that Einstein-frame scattering in the Higgs inflation model is unitary above the cut-off energy Λ ≃ M p /ξ We show explicitly how unitarity problems arise in both the Einstein and Jordan frames of the theory In a covariant gauge they arise from non-minimal Higgs self-couplings, which cannot be removed by field redefinitions because the target space is not flat In unitary gauge, where there is only a single scalar which can be redefined to achieve canonical kinetic terms, the unitarity problems arise through non-minimal Higgs-gauge couplings

301 citations

Journal ArticleDOI
TL;DR: In this paper, the quartic interaction between the heavy scalar singlet and the Higgs doublet leads to a positive tree-level threshold correction, which is very effective in stabilizing the potential.
Abstract: We show how a heavy scalar singlet with a large vacuum expectation value can evade the potential instability of the Standard Model electroweak vacuum. The quartic interaction between the heavy scalar singlet and the Higgs doublet leads to a positive tree-level threshold correction for the Higgs quartic coupling, which is very effective in stabilizing the potential. We provide examples, such as the see-saw, invisible axion and unitarized Higgs inflation, where the proposed mechanism is automatically implemented in well-defined ranges of Higgs masses.

285 citations


Cited by
More filters
Journal Article
TL;DR: In this paper, the ATLAS experiment is described as installed in i ts experimental cavern at point 1 at CERN and a brief overview of the expec ted performance of the detector is given.
Abstract: This paper describes the ATLAS experiment as installed in i ts experimental cavern at point 1 at CERN. It also presents a brief overview of the expec ted performance of the detector.

2,798 citations

Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, Ovsat Abdinov4  +5117 moreInstitutions (314)
TL;DR: A measurement of the Higgs boson mass is presented based on the combined data samples of the ATLAS and CMS experiments at the CERN LHC in the H→γγ and H→ZZ→4ℓ decay channels.
Abstract: A measurement of the Higgs boson mass is presented based on the combined data samples of the ATLAS and CMS experiments at the CERN LHC in the H→γγ and H→ZZ→4l decay channels. The results are obtained from a simultaneous fit to the reconstructed invariant mass peaks in the two channels and for the two experiments. The measured masses from the individual channels and the two experiments are found to be consistent among themselves. The combined measured mass of the Higgs boson is mH=125.09±0.21 (stat)±0.11 (syst) GeV.

1,567 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented the first complete next-to-next-toleading order analysis of the Standard Model Higgs potential, showing that at the Planck scale, absolute stability of the potential is not guaranteed at 98% C.L. for Mh < 126 GeV.
Abstract: We present the rst complete next-to-next-to-leading order analysis of the Standard Model Higgs potential. We computed the two-loop QCD and Yukawa corrections to the relation between the Higgs quartic coupling ( ) and the Higgs mass (Mh), reducing the theoretical uncertainty in the determination of the critical value of Mh for vacuum stability to 1 GeV. While at the Planck scale is remarkably close to zero, absolute stability of the Higgs potential is excluded at 98% C.L. for Mh < 126 GeV. Possible consequences of the near vanishing of at the Planck scale, including speculations about the role of the Higgs eld during ination, are discussed.

1,429 citations

Journal ArticleDOI
TL;DR: In this article, the parameters of the Higgs potential, the top Yukawa coupling and the electroweak gauge couplings were extracted from data with full 2-loop NNLO precision.
Abstract: We extract from data the parameters of the Higgs potential, the top Yukawa coupling and the electroweak gauge couplings with full 2-loop NNLO precision, and we extrapolate the SM parameters up to large energies with full 3-loop NNLO RGE precision. Then we study the phase diagram of the Standard Model in terms of high-energy parameters, finding that the measured Higgs mass roughly corresponds to the minimum values of the Higgs quartic and top Yukawa and the maximum value of the gauge couplings allowed by vacuum metastability. We discuss various theoretical interpretations of the near-criticality of the Higgs mass.

1,248 citations