scispace - formally typeset
Search or ask a question
Author

Hyun Soo Park

Bio: Hyun Soo Park is an academic researcher from University of Minnesota. The author has contributed to research in topics: Epipolar geometry & Trajectory. The author has an hindex of 31, co-authored 232 publications receiving 3374 citations. Previous affiliations of Hyun Soo Park include University of Pennsylvania & Seoul National University.


Papers
More filters
Proceedings ArticleDOI
25 Jul 2011
TL;DR: The theory and practice of using body-mounted cameras to reconstruct the motion of a subject through non-linear optimization is presented and results in settings where capture would be difficult or impossible with traditional motion capture systems are shown.
Abstract: Motion capture technology generally requires that recordings be performed in a laboratory or closed stage setting with controlled lighting. This restriction precludes the capture of motions that require an outdoor setting or the traversal of large areas. In this paper, we present the theory and practice of using body-mounted cameras to reconstruct the motion of a subject. Outward-looking cameras are attached to the limbs of the subject, and the joint angles and root pose are estimated through non-linear optimization. The optimization objective function incorporates terms for image matching error and temporal continuity of motion. Structure-from-motion is used to estimate the skeleton structure and to provide initialization for the non-linear optimization procedure. Global motion is estimated and drift is controlled by matching the captured set of videos to reference imagery. We show results in settings where capture would be difficult or impossible with traditional motion capture systems, including walking outside and swinging on monkey bars. The quality of the motion reconstruction is evaluated by comparing our results against motion capture data produced by a commercially available optical system.

236 citations

Book ChapterDOI
05 Sep 2010
TL;DR: The linear reconstruction algorithm is applied to reconstruct the time evolving 3D structure of several real-world scenes, given a collection of non-coincidental 2D images.
Abstract: This paper presents a linear solution for reconstructing the 3D trajectory of a moving point from its correspondence in a collection of 2D perspective images, given the 3D spatial pose and time of capture of the cameras that produced each image. Triangulation-based solutions do not apply, as multiple views of the point may not exist at each instant in time. A geometric analysis of the problem is presented and a criterion, called reconstructibility, is defined to precisely characterize the cases when reconstruction is possible, and how accurate it can be. We apply the linear reconstruction algorithm to reconstruct the time evolving 3D structure of several real-world scenes, given a collection of non-coincidental 2D images.

155 citations

Journal ArticleDOI
27 Jul 2014
TL;DR: An approach that takes multiple videos captured by social cameras---cameras that are carried or worn by members of the group involved in an activity---and produces a coherent "cut" video of the activity is presented.
Abstract: We present an approach that takes multiple videos captured by social cameras---cameras that are carried or worn by members of the group involved in an activity---and produces a coherent "cut" video of the activity. Footage from social cameras contains an intimate, personalized view that reflects the part of an event that was of importance to the camera operator (or wearer). We leverage the insight that social cameras share the focus of attention of the people carrying them. We use this insight to determine where the important "content" in a scene is taking place, and use it in conjunction with cinematographic guidelines to select which cameras to cut to and to determine the timing of those cuts. A trellis graph representation is used to optimize an objective function that maximizes coverage of the important content in the scene, while respecting cinematographic guidelines such as the 180-degree rule and avoiding jump cuts. We demonstrate cuts of the videos in various styles and lengths for a number of scenarios, including sports games, street performances, family activities, and social get-togethers. We evaluate our results through an in-depth analysis of the cuts in the resulting videos and through comparison with videos produced by a professional editor and existing commercial solutions.

144 citations

Proceedings ArticleDOI
01 Jun 2016
TL;DR: A method for future localization to predict plausible future trajectories of ego-motion in egocentric stereo images using first person experience of walking around in a variety of scenes to show predictive validity and apply to various real world daily activities including walking, shopping, and social interactions.
Abstract: We presents a method for future localization: to predict plausible future trajectories of ego-motion in egocentric stereo images. Our paths avoid obstacles, move between objects, even turn around a corner into space behind objects. As a byproduct of the predicted trajectories, we discover the empty space occluded by foreground objects. One key innovation is the creation of an EgoRetinal map, akin to an illustrated tourist map, that 'rearranges' pixels taking into accounts depth information, the ground plane, and body motion direction, so that it allows motion planning and perception of objects on one image space. We learn to plan trajectories directly on this EgoRetinal map using first person experience of walking around in a variety of scenes. In a testing phase, given an novel scene, we find multiple hypotheses of future trajectories from the learned experience. We refine them by minimizing a cost function that describes compatibility between the obstacles in the EgoRetinal map and trajectories. We quantitatively evaluate our method to show predictive validity and apply to various real world daily activities including walking, shopping, and social interactions.

123 citations

Journal ArticleDOI
TL;DR: The MMP-8 PTD Check test is a rapid, simple, and sensitive bedside test to detect intraamniotic infection/inflammation and to predict adverse outcome that includes short latency, chorioamnionitis, and significant neonatal morbidity in patients with PPROM.

120 citations


Cited by
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: This work proposes an LSTM model which can learn general human movement and predict their future trajectories and outperforms state-of-the-art methods on some of these datasets.
Abstract: Pedestrians follow different trajectories to avoid obstacles and accommodate fellow pedestrians. Any autonomous vehicle navigating such a scene should be able to foresee the future positions of pedestrians and accordingly adjust its path to avoid collisions. This problem of trajectory prediction can be viewed as a sequence generation task, where we are interested in predicting the future trajectory of people based on their past positions. Following the recent success of Recurrent Neural Network (RNN) models for sequence prediction tasks, we propose an LSTM model which can learn general human movement and predict their future trajectories. This is in contrast to traditional approaches which use hand-crafted functions such as Social forces. We demonstrate the performance of our method on several public datasets. Our model outperforms state-of-the-art methods on some of these datasets. We also analyze the trajectories predicted by our model to demonstrate the motion behaviour learned by our model.

2,587 citations

Journal ArticleDOI
TL;DR: In this paper, the authors offer a new book that enPDFd the perception of the visual world to read, which they call "Let's Read". But they do not discuss how to read it.
Abstract: Let's read! We will often find out this sentence everywhere. When still being a kid, mom used to order us to always read, so did the teacher. Some books are fully read in a week and we need the obligation to support reading. What about now? Do you still love reading? Is reading only for you who have obligation? Absolutely not! We here offer you a new book enPDFd the perception of the visual world to read.

2,250 citations

Journal ArticleDOI
TL;DR: A new dataset, Human3.6M, of 3.6 Million accurate 3D Human poses, acquired by recording the performance of 5 female and 6 male subjects, under 4 different viewpoints, is introduced for training realistic human sensing systems and for evaluating the next generation of human pose estimation models and algorithms.
Abstract: We introduce a new dataset, Human3.6M, of 3.6 Million accurate 3D Human poses, acquired by recording the performance of 5 female and 6 male subjects, under 4 different viewpoints, for training realistic human sensing systems and for evaluating the next generation of human pose estimation models and algorithms. Besides increasing the size of the datasets in the current state-of-the-art by several orders of magnitude, we also aim to complement such datasets with a diverse set of motions and poses encountered as part of typical human activities (taking photos, talking on the phone, posing, greeting, eating, etc.), with additional synchronized image, human motion capture, and time of flight (depth) data, and with accurate 3D body scans of all the subject actors involved. We also provide controlled mixed reality evaluation scenarios where 3D human models are animated using motion capture and inserted using correct 3D geometry, in complex real environments, viewed with moving cameras, and under occlusion. Finally, we provide a set of large-scale statistical models and detailed evaluation baselines for the dataset illustrating its diversity and the scope for improvement by future work in the research community. Our experiments show that our best large-scale model can leverage our full training set to obtain a 20% improvement in performance compared to a training set of the scale of the largest existing public dataset for this problem. Yet the potential for improvement by leveraging higher capacity, more complex models with our large dataset, is substantially vaster and should stimulate future research. The dataset together with code for the associated large-scale learning models, features, visualization tools, as well as the evaluation server, is available online at http://vision.imar.ro/human3.6m .

2,209 citations