scispace - formally typeset
Search or ask a question
Author

Hyunchae Chun

Other affiliations: University of Oxford
Bio: Hyunchae Chun is an academic researcher from Incheon National University. The author has contributed to research in topics: Visible light communication & Optical wireless communications. The author has an hindex of 19, co-authored 60 publications receiving 2146 citations. Previous affiliations of Hyunchae Chun include University of Oxford.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors presented a visible light communication (VLC) system based on a single 50-μm gallium nitride light emitting diode (LED) with a 3-dB modulation bandwidth of at least 60 MHz.
Abstract: This letter presents a visible light communication (VLC) system based on a single 50- μm gallium nitride light emitting diode (LED). A device of this size exhibits a 3-dB modulation bandwidth of at least 60 MHz - significantly higher than commercially available white lighting LEDs. Orthogonal frequency division multiplexing is employed as a modulation scheme. This enables the limited modulation bandwidth of the device to be fully used. Pre- and postequalization techniques, as well as adaptive data loading, are successfully applied to achieve a demonstration of wireless communication at speeds exceeding 3 Gb/s. To date, this is the fastest wireless VLC system using a single LED.

680 citations

Journal ArticleDOI
TL;DR: In this paper, the authors report on progress in the development of micro-scale GaN LEDs (micro-LEDs), optimized for visible light communications (VLC) using ON-OFF-keying, pulse-amplitude modulation and orthogonal frequency division multiplexing modulation schemes.
Abstract: Gallium-nitride (GaN)-based light-emitting diodes (LEDs) are highly efficient sources for general purpose illumination. Visible light communications (VLC) uses these sources to supplement existing wireless communications by offering a large, licence-free region of optical spectrum. Here, we report on progress in the development of micro-scale GaN LEDs (micro-LEDs), optimized for VLC. These blue-emitting micro-LEDs are shown to have very high electrical-to-optical modulation bandwidths, exceeding 800 MHz. The data transmission capabilities of the micro-LEDs are illustrated by demonstrations using ON–OFF-keying, pulse-amplitude modulation, and orthogonal frequency division multiplexing modulation schemes to transmit data over free space at the rates of 1.7, 3.4, and 5 Gb/s, respectively.

289 citations

Journal ArticleDOI
TL;DR: A trichromatic approach to wavelength division multiplexing using the different colours required to generate white light to transmit different data streams is described and the influence of colour combination on achievable data rate is analysed.
Abstract: LED-based visible light communications can provide high data rates to users. This can be further increased by the use of wavelength division multiplexing using the different colours required to generate white light to transmit different data streams. In this paper, a trichromatic approach is described and the influence of colour combination on achievable data rate is analysed. A demonstration of LED-based communications which achieves a data rate of >10 Gb/s by using a rate adaptive orthogonal-frequency-division-multiplexing scheme is also reported.

228 citations

Journal ArticleDOI
TL;DR: The state-of-the-art technology enabling bandwidth of GaN LEDs in the range of >400 MHz is explored and advances in key technologies, including advanced modulation, equalisation, and multiplexing that have enabled free-space VLC data rates beyond 10 Gb/s are outlined.
Abstract: The field of visible light communications (VLC) has gained significant interest over the last decade, in both fibre and free-space embodiments. In fibre systems, the availability of low cost plastic optical fibre (POF) that is compatible with visible data communications has been a key enabler. In free-space applications, the availability of hundreds of THz of the unregulated spectrum makes VLC attractive for wireless communications. This paper provides an overview of the recent developments in VLC systems based on gallium nitride (GaN) light-emitting diodes (LEDs), covering aspects from sources to systems. The state-of-the-art technology enabling bandwidth of GaN LEDs in the range of >400 MHz is explored. Furthermore, advances in key technologies, including advanced modulation, equalisation, and multiplexing that have enabled free-space VLC data rates beyond 10 Gb/s are also outlined.

208 citations

Journal ArticleDOI
TL;DR: The design and fabrication of integrated transmitter and receiver components are reported and a preliminary result of a MIMO system implementation operating at a data rate of 1 Gbps is demonstrated.
Abstract: Visible light communications (VLC) has the potential to play a major part in future smart home and next generation communication networks. There is significant ongoing work to increase the achievable data rates using VLC, to standardize it and integrate it within existing network infrastructures. The future of VLC systems depends on the ability to fabricate low cost transceiver components and to realize the promise of high data rates. This paper reports the design and fabrication of integrated transmitter and receiver components. The transmitter uses a two dimensional individually addressable array of micro light emitting diodes ( $\mu\text{LEDs}$ )and the receiver uses an integrated photodiode array fabricated in a CMOS technology. A preliminary result of a MIMO system implementation operating at a data rate of 1 Gbps is demonstrated. This paper also highlights the challenges in achieving highly parallel data communication along with the possible bottlenecks in integrated approaches.

119 citations


Cited by
More filters
Journal ArticleDOI
01 Jan 1977-Nature
TL;DR: Bergh and P.J.Dean as discussed by the authors proposed a light-emitting diode (LEDD) for light-aware Diodes, which was shown to have promising performance.
Abstract: Light-Emitting Diodes. (Monographs in Electrical and Electronic Engineering.) By A. A. Bergh and P. J. Dean. Pp. viii+591. (Clarendon: Oxford; Oxford University: London, 1976.) £22.

1,560 citations

Journal ArticleDOI
TL;DR: This survey provides a technology overview and review of existing literature of visible light communication and sensing and outlines important challenges that need to be addressed in order to design high-speed mobile networks using visible light Communication-VLC.
Abstract: The solid-state lighting is revolutionizing the indoor illumination. Current incandescent and fluorescent lamps are being replaced by the LEDs at a rapid pace. Apart from extremely high energy efficiency, the LEDs have other advantages such as longer lifespan, lower heat generation, and improved color rendering without using harmful chemicals. One additional benefit of LEDs is that they are capable of switching to different light intensity at a very fast rate. This functionality has given rise to a novel communication technology (known as visible light communication—VLC) where LED luminaires can be used for high speed data transfer. This survey provides a technology overview and review of existing literature of visible light communication and sensing. This paper provides a detailed survey of 1) visible light communication system and characteristics of its various components such as transmitter and receiver; 2) physical layer properties of visible light communication channel, modulation methods, and MIMO techniques; 3) medium access techniques; 4) system design and programmable platforms; and 5) visible light sensing and application such as indoor localization, gesture recognition, screen-camera communication, and vehicular networking. We also outline important challenges that need to be addressed in order to design high-speed mobile networks using visible light communication.

1,208 citations

Journal ArticleDOI
TL;DR: This paper will show how LiFi takes VLC further by using light emitting diodes (LEDs) to realise fully networked wireless systems to illustrate that LiFi attocells are not a theoretical concept any more, but at the point of real-world deployment.
Abstract: This paper attempts to clarify the difference between visible light communication (VLC) and light-fidelity (LiFi). In particular, it will show how LiFi takes VLC further by using light emitting diodes (LEDs) to realise fully networked wireless systems. Synergies are harnessed as luminaries become LiFi attocells resulting in enhanced wireless capacity providing the necessary connectivity to realise the Internet-of-Things, and contributing to the key performance indicators for the fifth generation of cellular systems (5G) and beyond. It covers all of the key research areas from LiFi components to hybrid LiFi/wireless fidelity (WiFi) networks to illustrate that LiFi attocells are not a theoretical concept any more, but at the point of real-world deployment.

760 citations

Journal ArticleDOI
TL;DR: This paper provides a comprehensive survey on VLC with an emphasis on challenges faced in indoor applications over the period 1979-2014.
Abstract: Visible Light Communication (VLC) is an emerging field in Optical Wireless Communication (OWC) which utilizes the superior modulation bandwidth of Light Emitting Diodes (LEDs) to transmit data. In modern day communication systems, the most popular frequency band is Radio Frequency (RF) mainly due to little interference and good coverage. However, the rapidly dwindling RF spectrum along with increasing wireless network traffic has substantiated the need for greater bandwidth and spectral relief. By combining illumination and communication, VLC provides ubiquitous communication while addressing the shortfalls and limitations of RF communication. This paper provides a comprehensive survey on VLC with an emphasis on challenges faced in indoor applications over the period 1979–2014. VLC is compared with infrared (IR) and RF systems and the necessity for using this beneficial technology in communication systems is justified. The advantages of LEDs compared to traditional lighting technologies are discussed and comparison is done between different types of LEDs currently available. Modulation schemes and dimming techniques for indoor VLC are discussed in detail. Methods needed to improve VLC system performance such as filtering, equalization, compensation, and beamforming are also presented. The recent progress made by various research groups in this field is discussed along with the possible applications of this technology. Finally, the limitations of VLC as well as the probable future directions are presented.

687 citations

Proceedings ArticleDOI
03 Dec 2015
TL;DR: Light-Fidelity takes visible light communication (VLC) further by using light emitting diodes (LEDs) to realise fully networked wireless systems for the Internet-of-Things (IoT), 5G and beyond.
Abstract: Light-Fidelity (LiFi) takes visible light communication (VLC) further by using light emitting diodes (LEDs) to realise fully networked wireless systems. Synergies are harnessed as lights become LiFi attocells resulting in enhanced wireless capacity for the Internet-of-Things (IoT), 5G and beyond.

527 citations