scispace - formally typeset
Search or ask a question
Author

Hyunseok Jeong

Bio: Hyunseok Jeong is an academic researcher from Seoul National University. The author has contributed to research in topics: Quantum entanglement & Coherent states. The author has an hindex of 35, co-authored 198 publications receiving 5081 citations. Previous affiliations of Hyunseok Jeong include Queen's University Belfast & Sogang University.


Papers
More filters
Journal ArticleDOI
16 Aug 2007-Nature
TL;DR: A protocol is demonstrated that allows the generation of arbitrarily large squeezed Schrödinger cat states, using homodyne detection and photon number states as resources, and clearly exhibits several quantum phase-space interference fringes between the ‘dead’ and ‘alive’ components.
Abstract: Schrodinger's cat is a Gedankenexperiment in quantum physics, in which an atomic decay triggers the death of the cat. Because quantum physics allow atoms to remain in superpositions of states, the classical cat would then be simultaneously dead and alive. By analogy, a 'cat' state of freely propagating light can be defined as a quantum superposition of well separated quasi-classical states-it is a classical light wave that simultaneously possesses two opposite phases. Such states play an important role in fundamental tests of quantum theory and in many quantum information processing tasks, including quantum computation, quantum teleportation and precision measurements. Recently, optical Schrodinger 'kittens' were prepared; however, they are too small for most of the aforementioned applications and increasing their size is experimentally challenging. Here we demonstrate, theoretically and experimentally, a protocol that allows the generation of arbitrarily large squeezed Schrodinger cat states, using homodyne detection and photon number states as resources. We implemented this protocol with light pulses containing two photons, producing a squeezed Schrodinger cat state with a negative Wigner function. This state clearly exhibits several quantum phase-space interference fringes between the 'dead' and 'alive' components, and is large enough to become useful for quantum information processing and experimental tests of quantum theory.

608 citations

Journal ArticleDOI
TL;DR: In this article, a teleportation scheme for a coherent-state qubit is developed and applied to gate operations, which is shown to be robust to detection inefficiency and can be used for universal quantum computation using optical coherent states.
Abstract: We study universal quantum computation using optical coherent states. A teleportation scheme for a coherent-state qubit is developed and applied to gate operations. This scheme is shown to be robust to detection inefficiency.

356 citations

Journal ArticleDOI
TL;DR: In this paper, an entangled two-mode coherent state is studied in the framework of 2-dimensional Hilbert space and an entanglement concentration scheme based on joint Bell-state measurements is worked out.
Abstract: An entangled two-mode coherent state is studied within the framework of 2\ifmmode\times\else\texttimes\fi{}2-dimensional Hilbert space. An entanglement concentration scheme based on joint Bell-state measurements is worked out. When the entangled coherent state is embedded in vacuum environment, its entanglement is degraded but not totally lost. It is found that the larger the initial coherent amplitude, the faster entanglement decreases. We investigate a scheme to teleport a coherent superposition state while considering a mixed quantum channel. We find that the decohered entangled coherent state may be useless for quantum teleportation as it gives the optimal fidelity of teleportation less than the classical limit 2/3.

284 citations

Journal ArticleDOI
TL;DR: In this article, a hybrid entanglement between a quantum single-photon qubit state and a classical one is experimentally generated by quantum-mechanically superposing non-Gaussian operations on distinct modes.
Abstract: Hybrid entanglement between a quantum single-photon qubit state and a classical one is experimentally generated by quantum-mechanically superposing non-Gaussian operations on distinct modes. Entanglement is clearly observed between the two different types of generated states. This method provides a feasible way to generate even larger hybrid entanglement.

195 citations

Journal ArticleDOI
TL;DR: In this article, a linear superposition of two macroscopically distinguishable optical coherent states can be generated using a single photon source and simple all-optical operations, which does not need photon number resolving measurements nor Kerr-type nonlinear interactions.
Abstract: It is shown that a linear superposition of two macroscopically distinguishable optical coherent states can be generated using a single photon source and simple all-optical operations. Weak squeezing on a single photon, beam mixing with an auxiliary coherent state, and photon detecting with imperfect threshold detectors are enough to generate a coherent state superposition in a free propagating optical field with a large coherent amplitude (alpha>2) and high fidelity (F>0.99). In contrast to all previous schemes to generate such a state, our scheme does not need photon number resolving measurements nor Kerr-type nonlinear interactions. Furthermore, it is robust to detection inefficiency and exhibits some resilience to photon production inefficiency.

168 citations


Cited by
More filters
Journal Article
TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

4,375 citations

01 Dec 1982
TL;DR: In this article, it was shown that any black hole will create and emit particles such as neutrinos or photons at just the rate that one would expect if the black hole was a body with a temperature of (κ/2π) (ħ/2k) ≈ 10−6 (M/M)K where κ is the surface gravity of the body.
Abstract: QUANTUM gravitational effects are usually ignored in calculations of the formation and evolution of black holes. The justification for this is that the radius of curvature of space-time outside the event horizon is very large compared to the Planck length (Għ/c3)1/2 ≈ 10−33 cm, the length scale on which quantum fluctuations of the metric are expected to be of order unity. This means that the energy density of particles created by the gravitational field is small compared to the space-time curvature. Even though quantum effects may be small locally, they may still, however, add up to produce a significant effect over the lifetime of the Universe ≈ 1017 s which is very long compared to the Planck time ≈ 10−43 s. The purpose of this letter is to show that this indeed may be the case: it seems that any black hole will create and emit particles such as neutrinos or photons at just the rate that one would expect if the black hole was a body with a temperature of (κ/2π) (ħ/2k) ≈ 10−6 (M/M)K where κ is the surface gravity of the black hole1. As a black hole emits this thermal radiation one would expect it to lose mass. This in turn would increase the surface gravity and so increase the rate of emission. The black hole would therefore have a finite life of the order of 1071 (M/M)−3 s. For a black hole of solar mass this is much longer than the age of the Universe. There might, however, be much smaller black holes which were formed by fluctuations in the early Universe2. Any such black hole of mass less than 1015 g would have evaporated by now. Near the end of its life the rate of emission would be very high and about 1030 erg would be released in the last 0.1 s. This is a fairly small explosion by astronomical standards but it is equivalent to about 1 million 1 Mton hydrogen bombs. It is often said that nothing can escape from a black hole. But in 1974, Stephen Hawking realized that, owing to quantum effects, black holes should emit particles with a thermal distribution of energies — as if the black hole had a temperature inversely proportional to its mass. In addition to putting black-hole thermodynamics on a firmer footing, this discovery led Hawking to postulate 'black hole explosions', as primordial black holes end their lives in an accelerating release of energy.

2,947 citations

Journal ArticleDOI
TL;DR: In this article, the authors present the Deutsch-Jozsa algorithm for continuous variables, and a deterministic version of it is used for quantum information processing with continuous variables.
Abstract: Preface. About the Editors. Part I: Quantum Computing. 1. Quantum computing with qubits S.L. Braunstein, A.K. Pati. 2. Quantum computation over continuous variables S. Lloyd, S.L. Braunstein. 3. Error correction for continuous quantum variables S.L. Braunstein. 4. Deutsch-Jozsa algorithm for continuous variables A.K. Pati, S.L. Braunstein. 5. Hybrid quantum computing S. Lloyd. 6. Efficient classical simulation of continuous variable quantum information processes S.D. Bartlett, B.C. Sanders, S.L. Braunstein, K. Nemoto. Part II: Quantum Entanglement. 7. Introduction to entanglement-based protocols S.L. Braunstein, A.K. Pati. 8. Teleportation of continuous uantum variables S.L. Braunstein, H.J. Kimble. 9. Experimental realization of continuous variable teleportation A. Furusawa, H.J. Kimble. 10. Dense coding for continuous variables S.L. Braunstein, H.J. Kimble. 11. Multipartite Greenberger-Horne-Zeilinger paradoxes for continuous variables S. Massar, S. Pironio. 12. Multipartite entanglement for continuous variables P. van Loock, S.L. Braunstein. 13. Inseparability criterion for continuous variable systems Lu-Ming Duan, G. Giedke, J.I. Cirac, P. Zoller. 14. Separability criterion for Gaussian states R. Simon. 15. Distillability and entanglement purification for Gaussian states G. Giedke, Lu-Ming Duan, J.I. Cirac, P. Zoller. 16. Entanglement purification via entanglement swapping S. Parke, S. Bose, M.B. Plenio. 17. Bound entanglement for continuous variables is a rare phenomenon P. Horodecki, J.I. Cirac, M. Lewenstein. Part III: Continuous Variable Optical-Atomic Interfacing. 18. Atomic continuous variable processing and light-atoms quantum interface A. Kuzmich, E.S. Polzik. Part IV: Limits on Quantum Information and Cryptography. 19. Limitations on discrete quantum information and cryptography S.L. Braunstein, A.K. Pati. 20. Quantum cloning with continuous variables N.J. Cerf. 21. Quantum key distribution with continuous variables in optics T.C. Ralph. 22. Secure quantum key distribution using squeezed states D. Gottesman, J. Preskill. 23. Experimental demonstration of dense coding and quantum cryptography with continuous variables Kunchi Peng, Qing Pan, Jing Zhang, Changde Xie. 24. Quantum solitons in optical fibres: basic requisites for experimental quantum communication G. Leuchs, Ch. Silberhorn, E. Konig, P.K. Lam, A. Sizmann, N. Korolkova. Index.

2,940 citations

Journal ArticleDOI
TL;DR: This review focuses on continuous-variable quantum information processes that rely on any combination of Gaussian states, Gaussian operations, and Gaussian measurements, including quantum communication, quantum cryptography, quantum computation, quantum teleportation, and quantum state and channel discrimination.
Abstract: The science of quantum information has arisen over the last two decades centered on the manipulation of individual quanta of information, known as quantum bits or qubits. Quantum computers, quantum cryptography, and quantum teleportation are among the most celebrated ideas that have emerged from this new field. It was realized later on that using continuous-variable quantum information carriers, instead of qubits, constitutes an extremely powerful alternative approach to quantum information processing. This review focuses on continuous-variable quantum information processes that rely on any combination of Gaussian states, Gaussian operations, and Gaussian measurements. Interestingly, such a restriction to the Gaussian realm comes with various benefits, since on the theoretical side, simple analytical tools are available and, on the experimental side, optical components effecting Gaussian processes are readily available in the laboratory. Yet, Gaussian quantum information processing opens the way to a wide variety of tasks and applications, including quantum communication, quantum cryptography, quantum computation, quantum teleportation, and quantum state and channel discrimination. This review reports on the state of the art in this field, ranging from the basic theoretical tools and landmark experimental realizations to the most recent successful developments.

2,781 citations

Journal ArticleDOI
TL;DR: In this article, the authors reviewed the original theory and its improvements, and a few examples of experimental two-qubit gates are given, and the use of realistic components, the errors they induce in the computation, and how these errors can be corrected is discussed.
Abstract: Linear optics with photon counting is a prominent candidate for practical quantum computing. The protocol by Knill, Laflamme, and Milburn [2001, Nature (London) 409, 46] explicitly demonstrates that efficient scalable quantum computing with single photons, linear optical elements, and projective measurements is possible. Subsequently, several improvements on this protocol have started to bridge the gap between theoretical scalability and practical implementation. The original theory and its improvements are reviewed, and a few examples of experimental two-qubit gates are given. The use of realistic components, the errors they induce in the computation, and how these errors can be corrected is discussed.

2,483 citations