scispace - formally typeset
Search or ask a question
Author

I. C. Lien

Bio: I. C. Lien is an academic researcher from National Taiwan University. The author has contributed to research in topics: Energy harvesting & Inductor. The author has an hindex of 6, co-authored 8 publications receiving 543 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, an analytical expression of harvested power is derived explicitly and validated numerically for the synchronized switch harvesting on inductor (SSHI) electronic interface for a piezoelectric energy harvesting system.
Abstract: This paper provides an analysis for the performance evaluation of a piezoelectric energy harvesting system using the synchronized switch harvesting on inductor (SSHI) electronic interface. In contrast with estimates based on a variety of approximations in the literature, an analytic expression of harvested power is derived explicitly and validated numerically for the SSHI system. It is shown that the electrical response using an ideal SSHI interface is similar to that using the standard interface in a strongly coupled electromechanical system operated at short circuit resonance. On the other hand, if the SSHI circuit is not ideal, the performance degradation is evaluated and classified according to the relative strength of coupling. It is found that the best use of the SSHI harvesting circuit is for systems in the mid-range of electromechanical coupling. The degradation in harvested power due to the non-perfect voltage inversion is not pronounced in this case, and a new finding shows that the reduction in power is much less sensitive to frequency deviations than that using the standard technique.

332 citations

Journal ArticleDOI
I. C. Lien1, Yi-Chung Shu1, Wen-Jong Wu1, Shu-Chia Shiu1, H C Lin1 
TL;DR: In this paper, an improved analysis accounting for the effect of frequency deviation from resonance on the electrical response of an SSHI system has been proposed to investigate the electrical behavior of a series-SSHI system.
Abstract: SSHI (synchronized switch harvesting on inductor) techniques have been demonstrated to be capable of boosting power in vibration-based piezoelectric energy harvesters. However, the effect of frequency deviation from resonance on the electrical response of an SSHI system has not been taken into account from the original analysis. Here an improved analysis accounting for such an effect is proposed to investigate the electrical behavior of a series-SSHI system. The analytic expression of harvested power is proposed and validated numerically. Its performance evaluation is carried out and compared with the piezoelectric systems using either the standard or parallel-SSHI electronic interfaces. The result shows that the electrical response of an ideal series-SSHI system is in sharp contrast to that of an ideal parallel-SSHI system. The former is similar to a strongly coupled electromechanical standard system operated at the open circuit resonance, while the latter is analogous to that operated at the short circuit resonance with different magnitudes of matching impedance. In addition, the performance degradation due to non-ideal voltage inversion is also discussed. It shows that a series-SSHI system avails against the standard technique in the case of medium coupling, since its peak power is close to the ideal optimal power and the reduction in power is less sensitive to frequency deviation. However, the consideration of inevitable diode loss in practical devices favors the parallel-SSHI technique, since the frequency-insensitive feature is much more pronounced in parallel-SSHI systems than in series-SSHI systems.

169 citations

Journal ArticleDOI
TL;DR: In this paper, the electrical response of a series connection of piezoelectric energy harvesters (PEHs) attached to various interface electronics, including standard and parallel-/series-SSHI circuits, is investigated.
Abstract: This paper investigates the electrical response of a series connection of piezoelectric energy harvesters (PEHs) attached to various interface electronics, including standard and parallel-/series-SSHI (synchronized switch harvesting on inductor) circuits. In contrast to the case of parallel connection of multiple oscillators, the system response is determined by the matrix formulation of charging on a capacitance. In addition, the adoption of an equivalent impedance approach shows that the capacitance matrix can be explicitly expressed in terms of the relevant load impedance. A model problem is proposed for performance evaluation of harvested power under different choices of interface circuits. The result demonstrates that the parallel-SSHI array system exhibits higher power output with moderate bandwidth improvement, while the series-SSHI system delivers a pronounced wideband at the cost of peak harvested power. The standard array system shows a mild ability in power harvesting between these two SSHI systems. Finally, comparisons between the series and parallel connection of oscillators are made, showing the striking contrast of these two cases.

78 citations

Proceedings ArticleDOI
TL;DR: This article analyzes the electrical behavior of an array of piezoelectric energy harvesters endowed with several interfacing circuits, including the standard AC/DC circuit and parallel/series SSHI (synchronized switch harvesting on inductor) circuits.
Abstract: This article analyzes the electrical behavior of an array of piezoelectric energy harvesters endowed with several interfacing circuits, including the standard AC/DC circuit and parallel/series SSHI (synchronized switch harvesting on inductor) circuits. The harvesters are classified according to the connection to a single or multiple rectifiers. The analytic estimates of harvested power are derived explicitly for different cases. The results show that DC power output changes from the power-boosting mode to the wideband mode according to various degrees of differences in the parameters of harvesters. In particular, the system with multiple rectifiers exhibits more bandwidth improvement than that with a single rectifier. Finally, it is shown that the electrical performance of an SSHI array system enjoys both power boosting and bandwidth improvement.

15 citations

Proceedings ArticleDOI
TL;DR: In this paper, the parallel connection of multiple piezoelectric oscillators with respective electrical rectification is modeled for different choices of electronic interfaces, including the standard and parallel-/series-SSHI (synchronized switch harvesting on inductor) circuits.
Abstract: This article reports the modeling of the parallel connection of multiple piezoelectric oscillators with respective electrical rectification. Such an array structure offers advantages of boosting power output and exhibiting broadband energy harvesting. The theoretical estimates are proposed for different choices of electronic interfaces, including the standard and parallel-/series-SSHI (synchronized switch harvesting on inductor) circuits. It is shown that the electrical response is governed by a set of simultaneous nonlinear equations with constraints indicating blocking by rectifiers. Finally, the validation is carried out by circuit simulations and shows good agreement.

10 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a closed-form analytical solution for a unimorph cantilever under base excitation based on the Euler-Bernoulli beam assumptions is presented, and the performance of the bimorph device is analyzed extensively for the short circuit and open circuit resonance frequency excitations.
Abstract: Piezoelectric transduction has received great attention for vibration-to-electric energy conversion over the last five years. A typical piezoelectric energy harvester is a unimorph or a bimorph cantilever located on a vibrating host structure, to generate electrical energy from base excitations. Several authors have investigated modeling of cantilevered piezoelectric energy harvesters under base excitation. The existing mathematical modeling approaches range from elementary single-degree-of-freedom models to approximate distributed parameter solutions in the sense of Rayleigh–Ritz discretization as well as analytical solution attempts with certain simplifications. Recently, the authors have presented the closed-form analytical solution for a unimorph cantilever under base excitation based on the Euler–Bernoulli beam assumptions. In this paper, the analytical solution is applied to bimorph cantilever configurations with series and parallel connections of piezoceramic layers. The base excitation is assumed to be translation in the transverse direction with a superimposed small rotation. The closed-form steady state response expressions are obtained for harmonic excitations at arbitrary frequencies, which are then reduced to simple but accurate single-mode expressions for modal excitations. The electromechanical frequency response functions (FRFs) that relate the voltage output and vibration response to translational and rotational base accelerations are identified from the multi-mode and single-mode solutions. Experimental validation of the single-mode coupled voltage output and vibration response expressions is presented for a bimorph cantilever with a tip mass. It is observed that the closed-form single-mode FRFs obtained from the analytical solution can successfully predict the coupled system dynamics for a wide range of electrical load resistance. The performance of the bimorph device is analyzed extensively for the short circuit and open circuit resonance frequency excitations and the accuracy of the model is shown in all cases.

1,187 citations

Journal ArticleDOI
TL;DR: In this paper, a non-resonant piezomagnetoelastic energy harvester with high-energy orbits was proposed and investigated over a range of excitation frequencies.

700 citations

Journal ArticleDOI
10 Mar 2014-Sensors
TL;DR: The question of power conversion is addressed by reviewing various circuit solutions and the work places emphasis on material operating modes and device configurations, from resonant to non-resonant devices and also to rotational solutions.
Abstract: This paper reviews the state of the art in piezoelectric energy harvesting. It presents the basics of piezoelectricity and discusses materials choice. The work places emphasis on material operating modes and device configurations, from resonant to non-resonant devices and also to rotational solutions. The reviewed literature is compared based on power density and bandwidth. Lastly, the question of power conversion is addressed by reviewing various circuit solutions.

339 citations

Journal ArticleDOI
TL;DR: In this article, the mean power acquired from a piezoelectric vibration-based energy harvester subjected to random base excitation is derived using the theory of random vibrations.
Abstract: Energy harvesting for the purpose of powering low power electronic sensor systems has received explosive attention in the last few years. Most works using deterministic approaches focusing on using the piezoelectric effect to harvest ambient vibration energy have concentrated on cantilever beams at resonance using harmonic excitation. Here, using a stochastic approach, we focus on using a stack configuration and harvesting broadband vibration energy, a more practically available ambient source. It is assumed that the ambient base excitation is stationary Gaussian white noise, which has a constant power-spectral density across the frequency range considered. The mean power acquired from a piezoelectric vibration-based energy harvester subjected to random base excitation is derived using the theory of random vibrations. Two cases, namely the harvesting circuit with and without an inductor, have been considered. Exact closed-form expressions involving non-dimensional parameters of the electromechanical system have been given and illustrated using numerical examples.

336 citations

Journal ArticleDOI
TL;DR: In this paper, a nonlinear piezomagneto-elastic energy harvester driven by stationary Gaussian white noise is considered and the simulated response of this validated model to random base excitation is considered.
Abstract: This letter considers a nonlinear piezomagnetoelastic energy harvester driven by stationary Gaussian white noise. The increase in the energy generated by this device has been demonstrated for harmonic excitation with slowly varying frequency in simulation and validated by experiment. This paper considers the simulated response of this validated model to random base excitation and shows that the system exhibits a stochastic resonance. If the variance of the excitation were known then the device may be optimized to maximize the power harvested, even under random excitation.

310 citations