scispace - formally typeset
Search or ask a question
Author

I. G. Irastorza

Other affiliations: CERN, Estácio S.A., Université Paris-Saclay  ...read more
Bio: I. G. Irastorza is an academic researcher from University of Zaragoza. The author has contributed to research in topics: Axion & MicroMegas detector. The author has an hindex of 53, co-authored 322 publications receiving 11562 citations. Previous affiliations of I. G. Irastorza include CERN & Estácio S.A..


Papers
More filters
Journal ArticleDOI
TL;DR: The axion-photon coupling strength of the CERN Axion Solar Telescope (CAST) was shown to be at least 0.02$ eV in the first vacuum phase (2003-2004) with low-background x-ray detectors and a new xray telescope as mentioned in this paper.
Abstract: During 2003--2015, the CERN Axion Solar Telescope (CAST) has searched for $a\to\gamma$ conversion in the 9 T magnetic field of a refurbished LHC test magnet that can be directed toward the Sun. In its final phase of solar axion searches (2013--2015), CAST has returned to evacuated magnet pipes, which is optimal for small axion masses. The absence of a significant signal above background provides a world leading limit of $g_{a\gamma} < 0.66 \times 10^{-10} {\rm GeV}^{-1}$ (95% C.L.) on the axion-photon coupling strength for $m_a \lesssim 0.02$ eV. Compared with the first vacuum phase (2003--2004), the sensitivity was vastly increased with low-background x-ray detectors and a new x-ray telescope. These innovations also serve as pathfinders for a possible next-generation axion helioscope.

752 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide a review of the latest developments of the theory, cosmology and astrophysics of axions and discuss the prospects to probe a large fraction of relevant parameter space in the coming decade.

704 citations

Journal ArticleDOI
TL;DR: A review of the experimental situation on several fronts can be found in this paper, where the microwave cavity experiment is making excellent progress in the search for dark matter axions in the μ eV range and may plausibly be extended up to 100 μeV.
Abstract: Four decades after its prediction, the axion remains the most compelling solution to the strong-CP problem and a well-motivated dark matter candidate, inspiring a host of elegant and ultrasensitive experiments based on axion–photon mixing. This article reviews the experimental situation on several fronts. The microwave cavity experiment is making excellent progress in the search for dark matter axions in the μeV range and may plausibly be extended up to 100 μeV. Within the past several years, however, researchers have realized that axions are pervasive throughout string theories, but with masses that fall naturally in the neV range, for which an NMR-based search is under development. Both searches for axions emitted from the Sun's burning core and purely laboratory experiments based on photon regeneration have recently made great progress, with ambitious projects proposed for the coming decade. Each of these campaigns has pushed the state of the art in technology, enabling large gains in sensitivity and m...

484 citations

Journal ArticleDOI
TL;DR: In this paper, the CERN Axion Solar Telescope (CAST) set-up with improved conditions in all detectors was used to search for solar axions or similar particles that couple to two photons.
Abstract: We have searched for solar axions or similar particles that couple to two photons by using the CERN Axion Solar Telescope (CAST) set-up with improved conditions in all detectors. From the absence of excess x-rays when the magnet was pointing to the Sun, we set an upper limit on the axion–photon coupling of gaγ<8.8 × 10−11 GeV−1 at 95% CL for . This result is the best experimental limit over a broad range of axion masses and for also supersedes the previous limit derived from energy-loss arguments on globular cluster stars.

415 citations

31 Oct 2013
TL;DR: A review of the physics motivation for dark sectors and the exciting opportunities for experimental exploration is provided in this article, where axions, which solve the strong CP problem and are an excellent dark matter candidate, and their generalization to axion-like particles.
Abstract: Dark sectors, consisting of new, light, weakly-coupled particles that do not interact with the known strong, weak, or electromagnetic forces, are a particularly compelling possibility for new physics. Nature may contain numerous dark sectors, each with their own beautiful structure, distinct particles, and forces. This review summarizes the physics motivation for dark sectors and the exciting opportunities for experimental exploration. It is the summary of the Intensity Frontier subgroup "New, Light, Weakly-coupled Particles" of the Community Summer Study 2013 (Snowmass). We discuss axions, which solve the strong CP problem and are an excellent dark matter candidate, and their generalization to axion-like particles. We also review dark photons and other dark-sector particles, including sub-GeV dark matter, which are theoretically natural, provide for dark matter candidates or new dark matter interactions, and could resolve outstanding puzzles in particle and astro-particle physics. In many cases, the exploration of dark sectors can proceed with existing facilities and comparatively modest experiments. A rich, diverse, and low-cost experimental program has been identified that has the potential for one or more game-changing discoveries. These physics opportunities should be vigorously pursued in the US and elsewhere.

382 citations


Cited by
More filters
Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
TL;DR: In this article, the Wilkinson Microwave Anisotropy Probe (WMAP) 5-year data were used to constrain the physics of cosmic inflation via Gaussianity, adiabaticity, the power spectrum of primordial fluctuations, gravitational waves, and spatial curvature.
Abstract: The Wilkinson Microwave Anisotropy Probe (WMAP) 5-year data provide stringent limits on deviations from the minimal, six-parameter Λ cold dark matter model. We report these limits and use them to constrain the physics of cosmic inflation via Gaussianity, adiabaticity, the power spectrum of primordial fluctuations, gravitational waves, and spatial curvature. We also constrain models of dark energy via its equation of state, parity-violating interaction, and neutrino properties, such as mass and the number of species. We detect no convincing deviations from the minimal model. The six parameters and the corresponding 68% uncertainties, derived from the WMAP data combined with the distance measurements from the Type Ia supernovae (SN) and the Baryon Acoustic Oscillations (BAO) in the distribution of galaxies, are: Ω b h 2 = 0.02267+0.00058 –0.00059, Ω c h 2 = 0.1131 ± 0.0034, ΩΛ = 0.726 ± 0.015, ns = 0.960 ± 0.013, τ = 0.084 ± 0.016, and at k = 0.002 Mpc-1. From these, we derive σ8 = 0.812 ± 0.026, H 0 = 70.5 ± 1.3 km s-1 Mpc–1, Ω b = 0.0456 ± 0.0015, Ω c = 0.228 ± 0.013, Ω m h 2 = 0.1358+0.0037 –0.0036, z reion = 10.9 ± 1.4, and t 0 = 13.72 ± 0.12 Gyr. With the WMAP data combined with BAO and SN, we find the limit on the tensor-to-scalar ratio of r 1 is disfavored even when gravitational waves are included, which constrains the models of inflation that can produce significant gravitational waves, such as chaotic or power-law inflation models, or a blue spectrum, such as hybrid inflation models. We obtain tight, simultaneous limits on the (constant) equation of state of dark energy and the spatial curvature of the universe: –0.14 < 1 + w < 0.12(95%CL) and –0.0179 < Ω k < 0.0081(95%CL). We provide a set of WMAP distance priors, to test a variety of dark energy models with spatial curvature. We test a time-dependent w with a present value constrained as –0.33 < 1 + w 0 < 0.21 (95% CL). Temperature and dark matter fluctuations are found to obey the adiabatic relation to within 8.9% and 2.1% for the axion-type and curvaton-type dark matter, respectively. The power spectra of TB and EB correlations constrain a parity-violating interaction, which rotates the polarization angle and converts E to B. The polarization angle could not be rotated more than –59 < Δα < 24 (95% CL) between the decoupling and the present epoch. We find the limit on the total mass of massive neutrinos of ∑m ν < 0.67 eV(95%CL), which is free from the uncertainty in the normalization of the large-scale structure data. The number of relativistic degrees of freedom (dof), expressed in units of the effective number of neutrino species, is constrained as N eff = 4.4 ± 1.5 (68%), consistent with the standard value of 3.04. Finally, quantitative limits on physically-motivated primordial non-Gaussianity parameters are –9 < f local NL < 111 (95% CL) and –151 < f equil NL < 253 (95% CL) for the local and equilateral models, respectively.

5,904 citations

Journal ArticleDOI
TL;DR: In this article, a Theta vacua of gauge theories is proposed for cosmologists. But the authors do not consider the cosmological perturbation theory of axions in string theory.
Abstract: 1 Introduction 2 Models: the QCD axion; the strong CP problem; PQWW, KSVZ, DFSZ; anomalies, instantons and the potential; couplings; axions in string theory 3 Production and IC's: SSB and non-perturbative physics; the axion field during inflation and PQ SSB; cosmological populations - decay of parent, topological defects, thermal production, vacuum realignment 4 The Cosmological Field: action; background evolution; misalignment for QCD axion and ALPs; cosmological perturbation theory - ic's, early time treatment, axion sound speed and Jeans scale, transfer functions and WDM; the Schrodinger picture; simualting axions; BEC 5 CMB and LSS: Primary anisotropies; matter power; combined constraints; Isocurvature and inflation 6 Galaxy Formation; halo mass function; high-z and the EOR; density profiles; the CDM small-scale crises 7 Accelerated expansion: the cc problem; axion inflation (natural and monodromy) 8 Gravitational interactions with black holes and pulsars 9 Non-gravitational interactions: stellar astrophysics; LSW; vacuum birefringence; axion forces; direct detection with ADMX and CASPEr; Axion decays; dark radiation; astrophysical magnetic fields; cosmological birefringence 10 Conclusions A Theta vacua of gauge theories B EFT for cosmologists C Friedmann equations D Cosmological fluids E Bayes Theorem and priors F Degeneracies and sampling G Sheth-Tormen HMF

1,282 citations