scispace - formally typeset
Search or ask a question
Author

I. L. Thomas

Bio: I. L. Thomas is an academic researcher from United States Department of Energy. The author has an hindex of 1, co-authored 1 publications receiving 3330 citations.

Papers
More filters
Journal ArticleDOI
15 Nov 2001-Nature
TL;DR: Fossil fuels currently supply most of the world's energy needs, and however unacceptable their long-term consequences, the supplies are likely to remain adequate for the next few generations.
Abstract: Fossil fuels currently supply most of the world's energy needs, and however unacceptable their long-term consequences, the supplies are likely to remain adequate for the next few generations. Scientists and policy makers must make use of this period of grace to assess alternative sources of energy and determine what is scientifically possible, environmentally acceptable and technologically promising.

4,005 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a selective solvothermal synthesis of MoS2 nanoparticles on reduced graphene oxide (RGO) sheets suspended in solution was developed, which exhibited superior electrocatalytic activity in the hydrogen evolution reaction (HER).
Abstract: Advanced materials for electrocatalytic and photoelectrochemical water splitting are central to the area of renewable energy. In this work, we developed a selective solvothermal synthesis of MoS2 nanoparticles on reduced graphene oxide (RGO) sheets suspended in solution. The resulting MoS2/RGO hybrid material possessed nanoscopic few-layer MoS2 structures with an abundance of exposed edges stacked onto graphene, in strong contrast to large aggregated MoS2 particles grown freely in solution without GO. The MoS2/RGO hybrid exhibited superior electrocatalytic activity in the hydrogen evolution reaction (HER) relative to other MoS2 catalysts. A Tafel slope of ∼41 mV/decade was measured for MoS2 catalysts in the HER for the first time; this exceeds by far the activity of previous MoS2 catalysts and results from the abundance of catalytic edge sites on the MoS2 nanoparticles and the excellent electrical coupling to the underlying graphene network. The ∼41 mV/decade Tafel slope suggested the Volmer–Heyrovsky mec...

4,370 citations

Journal ArticleDOI
TL;DR: The ability of different metal surfaces and of the enzymes nitrogenase and hydrogenase to catalyze the hydrogen evolution reaction is analyzed and a necessary criterion for high catalytic activity is found: that the binding free energy of atomic hydrogen to the catalyst is close to zero.
Abstract: The electrochemical hydrogen evolution reaction is catalyzed most effectively by the Pt group metals. As H2 is considered as a future energy carrier, the need for these catalysts will increase and alternatives to the scarce and expensive Pt group catalysts will be needed. We analyze the ability of different metal surfaces and of the enzymes nitrogenase and hydrogenase to catalyze the hydrogen evolution reaction and find a necessary criterion for high catalytic activity. The necessary criterion is that the binding free energy of atomic hydrogen to the catalyst is close to zero. The criterion enables us to search for new catalysts, and inspired by the nitrogenase active site, we find that MoS2 nanoparticles supported on graphite are a promising catalyst. They catalyze electrochemical hydrogen evolution at a moderate overpotential of 0.1−0.2 V.

3,302 citations

Journal ArticleDOI
TL;DR: The electrocatalytic trends established for extended surfaces are used to explain the activity pattern of Pt(3)M nanocatalysts as well as to provide a fundamental basis for the catalytic enhancement of cathode catalysts.
Abstract: One of the key objectives in fuel-cell technology is to improve and reduce Pt loading as the oxygen-reduction catalyst. Here, we show a fundamental relationship in electrocatalytic trends on Pt(3)M (M=Ni, Co, Fe, Ti, V) surfaces between the experimentally determined surface electronic structure (the d-band centre) and activity for the oxygen-reduction reaction. This relationship exhibits 'volcano-type' behaviour, where the maximum catalytic activity is governed by a balance between adsorption energies of reactive intermediates and surface coverage by spectator (blocking) species. The electrocatalytic trends established for extended surfaces are used to explain the activity pattern of Pt(3)M nanocatalysts as well as to provide a fundamental basis for the catalytic enhancement of cathode catalysts. By combining simulations with experiments in the quest for surfaces with desired activity, an advanced concept in nanoscale catalyst engineering has been developed.

2,774 citations

Journal ArticleDOI
TL;DR: Low onset overpotential and small Tafel slope, along with large cathodic current density and excellent durability, are all achieved for the novel hydrogen-evolution-reaction electrocatalyst.
Abstract: Defect-rich MoS2 ultrathin nanosheets are synthesized on a gram scale for electrocatalytic hydrogen evolution. The novel defect-rich structure introduces additional active edge sites into the MoS2 ultrathin nanosheets, which significantly improves their electrocatalytic performance. Low onset overpotential and small Tafel slope, along with large cathodic current density and excellent durability, are all achieved for the novel hydrogen-evolution-reaction electrocatalyst.

2,598 citations

Journal ArticleDOI
TL;DR: The overall catalytic activities for these reaction as a function of a more fundamental property, a descriptor, OH-M(2+δ) bond strength (0 ≤ δ ≤ 1.5), provide the foundation for rational design of 'active sites' for practical alkaline HER and OER electrocatalysts.
Abstract: Design and synthesis of materials for efficient electrochemical transformation of water to molecular hydrogen and of hydroxyl ions to oxygen in alkaline environments is of paramount importance in reducing energy losses in water–alkali electrolysers. Here, using 3d-M hydr(oxy)oxides, with distinct stoichiometries and morphologies in the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) regions, we establish the overall catalytic activities for these reaction as a function of a more fundamental property, a descriptor, OH–M2+δ bond strength (0 ≤ δ ≤ 1.5). This relationship exhibits trends in reactivity (Mn < Fe < Co < Ni), which is governed by the strength of the OH–M2+δ energetic (Ni < Co < Fe < Mn). These trends are found to be independent of the source of the OH, either the supporting electrolyte (for the OER) or the water dissociation product (for the HER). The successful identification of these electrocatalytic trends provides the foundation for rational design of ‘active sites’ for practical alkaline HER and OER electrocatalysts. Efficient electrochemical transformation of water to molecular hydrogen and of hydroxyl ions to oxygen in alkaline environments is important for reducing energy losses in water–alkali electrolysers. Insight into the activities of hydr(oxy)oxides on platinum catalyst surfaces for hydrogen and oxygen evolution reactions should prove significant for designing practical alkaline electrocatalysts.

2,271 citations