scispace - formally typeset
Search or ask a question
Author

I. Llorente-Garcia

Bio: I. Llorente-Garcia is an academic researcher from Imperial College London. The author has contributed to research in topics: Interferometry & Noise (electronics). The author has an hindex of 3, co-authored 4 publications receiving 86 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: This work investigates the use of a Bose-Einstein condensate trapped on an atom chip for making interferometric measurements of small energy differences and measures and explains the noise in the energy difference of the split condensates, which derives from statistical Noise in the number difference.
Abstract: We investigate the use of a Bose-Einstein condensate trapped on an atom chip for making interferometric measurements of small energy differences. We measure and explain the noise in the energy difference of the split condensates, which derives from statistical noise in the number difference. We also consider systematic errors. A leading effect is the variation of the rf magnetic field in the trap with distance from the wires on the chip surface. This can produce energy differences that are comparable with those due to gravity.

64 citations

Journal ArticleDOI
TL;DR: In this paper, an atom chip that operates as a matter wave interferometer was fabricated and tested by ion-beam milling of gold evaporated onto a silicon substrate, showing that it can coherently split and recombine a Bose-Einstein condensate with good phase stability.
Abstract: We have fabricated and tested an atom chip that operates as a matter wave interferometer. In this communication we describe the fabrication of the chip by ion-beam milling of gold evaporated onto a silicon substrate. We present data on the quality of the wires, on the current density that can be reached in the wires and on the smoothness of the magnetic traps that are formed. We demonstrate the operation of the interferometer, showing that we can coherently split and recombine a Bose–Einstein condensate with good phase stability.

26 citations

Journal ArticleDOI
01 Jan 2005
TL;DR: In this paper, the 1D gas regime can be realized and studied by trapping the atoms in high-aspect-ratio traps in which the radial motion of the system is confined to zero-point oscillation.
Abstract: Atom-chip technology can be used to confine atoms tightly using permanently magnetised videotape along with external magnetic fields. The one-dimensional (1D) gas regime can be realised and studied by trapping the atoms in high-aspect-ratio traps in which the radial motion of the system is confined to zero-point oscillation.

3 citations

Journal ArticleDOI
TL;DR: In this paper, an atom chip that operates as a matter wave interferometer was fabricated and tested by ion-beam milling of gold evaporated onto a silicon substrate, showing that it can coherently split and recombine a Bose-Einstein condensate with good phase stability.
Abstract: We have fabricated and tested an atom chip that operates as a matter wave interferometer. In this communication we describe the fabrication of the chip by ion-beam milling of gold evaporated onto a silicon substrate. We present data on the quality of the wires, on the current density that can be reached in the wires and on the smoothness of the magnetic traps that are formed. We demonstrate the operation of the interferometer, showing that we can coherently split and recombine a Bose-Einstein condensate with good phase stability.

2 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A full Mach-Zehnder sequence with trapped Bose-Einstein condensates confined on an atom chip is demonstrated, highlighting the potential of entanglement as a resource for metrology and paving the way for integrated quantum-enhanced matter-wave sensors.
Abstract: Particle-wave duality enables the construction of interferometers for matter waves, which complement optical interferometers in precision measurement devices. This requires the development of atom-optics analogues to beam splitters, phase shifters and recombiners. Integrating these elements into a single device has been a long-standing goal. Here we demonstrate a full Mach-Zehnder sequence with trapped Bose-Einstein condensates confined on an atom chip. Particle interactions in our Bose-Einstein condensate matter waves lead to a nonlinearity, absent in photon optics. We exploit it to generate a non-classical state having reduced number fluctuations inside the interferometer. Making use of spatially separated wave packets, a controlled phase shift is applied and read out by a non-adiabatic matter-wave recombiner. We demonstrate coherence times a factor of three beyond what is expected for coherent states, highlighting the potential of entanglement as a resource for metrology. Our results pave the way for integrated quantum-enhanced matter-wave sensors.

218 citations

Journal ArticleDOI
TL;DR: An atom chip is realized that enables the integration of laser cooling and trapping into a compact apparatus, and delivers ten thousand times more atoms than previous magneto-optical traps with microfabricated optics and can reach sub-Doppler temperatures.
Abstract: Laser-cooled atoms are central to modern precision measurements1,2,3,4,5,6. They are also increasingly important as an enabling technology for experimental cavity quantum electrodynamics7,8, quantum information processing9,10,11 and matter–wave interferometry12. Although significant progress has been made in miniaturizing atomic metrological devices13,14, these are limited in accuracy by their use of hot atomic ensembles and buffer gases. Advances have also been made in producing portable apparatus that benefits from the advantages of atoms in the microkelvin regime15,16. However, simplifying atomic cooling and loading using microfabrication technology has proved difficult17,18. In this Letter we address this problem, realizing an atom chip that enables the integration of laser cooling and trapping into a compact apparatus. Our source delivers ten thousand times more atoms than previous magneto-optical traps with microfabricated optics and, for the first time, can reach sub-Doppler temperatures. Moreover, the same chip design offers a simple way to form stable optical lattices. These features, combined with simplicity of fabrication and ease of operation, make these new traps a key advance in the development of cold-atom technology for high-accuracy, portable measurement devices. An atom chip that enables the integration of laser cooling and trapping is demonstrated.

159 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that individual atoms are too small to screen the chameleon field inside a large high-vacuum chamber, and therefore can detect the field with high sensitivity.
Abstract: Theories of dark energy require a screening mechanism to explain why the associated scalar fields do not mediate observable long range fifth forces. The archetype of this is the chameleon field. Here we show that individual atoms are too small to screen the chameleon field inside a large high-vacuum chamber, and therefore can detect the field with high sensitivity. We derive new limits on the chameleon parameters from existing experiments, and show that most of the remaining chameleon parameter space is readily accessible using atom interferometry.

134 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review the field of atom chips in the context of Bose-Einstein Condensates (BEC) as well as cold matter in general.
Abstract: Here we review the field of atom chips in the context of Bose–Einstein Condensates (BEC) as well as cold matter in general. Twenty years after the first realization of the BEC and 15 years after the realization of the atom chip, the latter has been found to enable extraordinary feats: from producing BECs at a rate of several per second, through the realization of matter-wave interferometry, and all the way to novel probing of surfaces and new forces. In addition, technological applications are also being intensively pursued. This review will describe these developments and more, including new ideas which have not yet been realized.

119 citations

Journal ArticleDOI
TL;DR: A combination of static and oscillating magnetic fields can be used to "dress" atoms with radio-frequency (RF), or microwave, radiation as mentioned in this paper, and the spatial variation of these fields can also be used for creating an enormous variety of traps for ultra-cold atoms and quantum gases.
Abstract: A combination of static and oscillating magnetic fields can be used to ‘dress’ atoms with radio-frequency (RF), or microwave, radiation. The spatial variation of these fields can be used to create an enormous variety of traps for ultra-cold atoms and quantum gases. This article reviews the type and character of these adiabatic traps and the applications which include atom interferometry and the study of low-dimensional quantum systems. We introduce the main concepts of magnetic traps leading to adiabatic dressed traps. The concept of adiabaticity is discussed in the context of the Landau–Zener model. The first bubble trap experiment is reviewed together with the method used for loading it. Experiments based on atom chips show the production of double wells and ring traps. Dressed atom traps can be evaporatively cooled with an additional RF field, and a weak RF field can be used to probe the spectroscopy of the adiabatic potentials. Several approaches to ring traps formed from adiabatic potentials are discussed, including those based on atom chips, time-averaged adiabatic potentials and induction methods. Several proposals for adiabatic lattices with dressed atoms are also reviewed.

87 citations