scispace - formally typeset
Search or ask a question
Author

I. M. Hook

Bio: I. M. Hook is an academic researcher from University of Oxford. The author has contributed to research in topics: Redshift & Supernova. The author has an hindex of 37, co-authored 77 publications receiving 28210 citations. Previous affiliations of I. M. Hook include INAF & European Southern Observatory.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the first seven supernovae (SN Ia's) of the Calan/Tololo survey were used as standard candles without a light-curve width correction.
Abstract: The Supernova Cosmology Project has discovered over 28 supernovae (SNs) at 0.35 < z < 0.65 in an ongoing program that uses Type Ia SNs (SN Ia's) as high-redshift distance indicators. Here we present measurements of the ratio between the locally observed and global Hubble constants, HL0/HG0, based on the first seven SNs of this high-redshift data set compared with 18 SNs at z ≤ 0.1 from the Calan/Tololo survey. If ΩM ≤ 1, then light-curve width corrected SN magnitudes yield HL0/HG0 < 1.10 (95% confidence level) in both a Λ = 0 and a flat universe. The analysis using the SN Ia's as standard candles without a light-curve width correction yields similar results. These results rule out the hypothesis that the discrepant ages of the Universe derived from globular clusters and recent measurements of the Hubble constant are attributable to a locally underdense bubble. Using the Cepheid-distance-calibrated absolute magnitudes for SN Ia's of Sandage et al., we can also measure the global Hubble constant, HG0. If ΩM ≥ 0.2, we find that HG0 < 70 km s-1 Mpc-1 in a Λ = 0 universe and HG0 < 78 km s-1 Mpc-1 in a flat universe, correcting the distant and local SN apparent magnitudes for light-curve width. Lower results for HG0 are obtained if the magnitudes are not width-corrected.

31 citations

Book ChapterDOI
01 Jan 1997
TL;DR: In this article, the first results from a systematic search for high redshift Type Ia supernovae were reported, and the light curves were all broadened (time dilated) as expected from the expanding universe hypothesis.
Abstract: This work is based on the first results from a systematic search for high redshift Type Ia supernovae. Using filters in the R-band we discovered seven such SNe, with redshift z = 0.3 — 0.5, before or at maximum light. Type Ia SNe are known to be a homogeneous group of SNe, to first order, with very similar light curves, spectra and peak luminosities. In this talk we report that the light curves we observe are all broadened (time dilated) as expected from the expanding universe hypothesis. Small variations from the expected 1 + z broadening of the light curve widths can be attributed to a width-brightness correlation that has been observed for nearby SNe (z < 0.1). We show in this talk the first clear observation of the cosmological time dilation for macroscopic objects.

28 citations

Journal ArticleDOI
TL;DR: In this paper, the authors measured the mass density, energy density, and cosmological-constant energy density of 42 Type Ia supernovae from the Cal?n/Tololo Supernova Survey at redshifts below 0.1.
Abstract: The fate of the Universe, infinite expansion or a ldquo;big crunchrdquo;, can be determined by measuring the redshifts and brightness of very distant supernovae. These provide a record of changes in the expansion rate of the Universe over the past several billion years. The mass density, ?M, and cosmological-constant energy density ??, are measured from a data-set consisting of 42 high-redshift Type Ia supernovae discovered by the Supernova Cosmology Project. The magnitude-redshift data for these supernovae, at redshifts between 0.18 and 0.83, are fit jointly with a set of supernovae from the Cal?n/Tololo Supernova Survey, at redshifts below 0.1, to yield values for the cosmological parameters. We find ?Mflat = 0.28+0.09-0.08 (1? statistical)+0.05-0.04 (identified systematics). The data are strongly inconsistent with a ? = 0 flat cosmology, the simplest inflationary universe model. An open, ? = 0 cosmology also does not fit the data well: the data indicate that the cosmological constant is non-zero and positive, with a confidence of P(?>0) = 99%, including the identified systematic uncertainties. Thus, the Universe is found to be accelerating, i.e., q0 = ?M/2 - ?? < 0. The best-fit age of the universe relative to the Hubble time is t0flat = 14.9+1.4-1.1 (0.63/h) Gyr for a flat cosmology.

26 citations

Book ChapterDOI
01 Jan 1997
TL;DR: Kim et al. as mentioned in this paper used a batch search strategy to find high-redshift Type Ia supernovae and observed their spectra and light curves using the peak of their light curves.
Abstract: Our search for high-redshift Type Ia supernovae discovered, in its first years, a sample of seven supernovae. Using a ``batch`` search strategy, almost all were discovered before maximum light and were observed over the peak of their light curves. The spectra and light curves indicate that almost all were Type Ia supernovae at redshifts z = 0.35 - 0.5. These high-redshift supernovae can provide a distance indicator and ``standard clock`` to study the cosmological parameters q{sub 0} , {Lambda}, {Omega}{sub 0} , and H{sub 0}. This presentation and the following presentations of Kim et al. (1996), Goldhaber et al. (1996), and Pain et al. (1996) will discuss observation strategies and rates, analysis and calibration issues, the sources of measurement uncertainty, and the cosmological implications, including bounds on q{sub 0} , of these first high-redshift supernovae from our ongoing search.

20 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented spectra of twelve Type Ia supernovae obtained in 1999 at the William Herschel Telescope and the Nordic Optical Telescope during a search for Type IIa supernova (SN Ia) at intermediate redshift.
Abstract: We present spectra of twelve Type Ia supernovae obtained in 1999 at the William Herschel Telescope and the Nordic Optical Telescope during a search for Type Ia supernovae (SN Ia) at intermediate redshift. The spectra range from z=0.178 to z=0.493, including five high signal-to-noise ratio SN Ia spectra in the still largely unexplored range 0.15 < z < 0.3. Most of the spectra were obtained before or around restframe B-band maximum light. None of them shows the peculiar spectral features found in low-redshift over- or under-luminous SN Ia. Expansion velocities of characteristic spectral absorption features such as SiII at 6355 angs., SII at 5640 angs. and CaII at 3945 angs. are found consistent with their low-z SN Ia counterparts.

18 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the mass density, Omega_M, and cosmological-constant energy density of the universe were measured using the analysis of 42 Type Ia supernovae discovered by the Supernova Cosmology project.
Abstract: We report measurements of the mass density, Omega_M, and cosmological-constant energy density, Omega_Lambda, of the universe based on the analysis of 42 Type Ia supernovae discovered by the Supernova Cosmology Project. The magnitude-redshift data for these SNe, at redshifts between 0.18 and 0.83, are fit jointly with a set of SNe from the Calan/Tololo Supernova Survey, at redshifts below 0.1, to yield values for the cosmological parameters. All SN peak magnitudes are standardized using a SN Ia lightcurve width-luminosity relation. The measurement yields a joint probability distribution of the cosmological parameters that is approximated by the relation 0.8 Omega_M - 0.6 Omega_Lambda ~= -0.2 +/- 0.1 in the region of interest (Omega_M <~ 1.5). For a flat (Omega_M + Omega_Lambda = 1) cosmology we find Omega_M = 0.28{+0.09,-0.08} (1 sigma statistical) {+0.05,-0.04} (identified systematics). The data are strongly inconsistent with a Lambda = 0 flat cosmology, the simplest inflationary universe model. An open, Lambda = 0 cosmology also does not fit the data well: the data indicate that the cosmological constant is non-zero and positive, with a confidence of P(Lambda > 0) = 99%, including the identified systematic uncertainties. The best-fit age of the universe relative to the Hubble time is t_0 = 14.9{+1.4,-1.1} (0.63/h) Gyr for a flat cosmology. The size of our sample allows us to perform a variety of statistical tests to check for possible systematic errors and biases. We find no significant differences in either the host reddening distribution or Malmquist bias between the low-redshift Calan/Tololo sample and our high-redshift sample. The conclusions are robust whether or not a width-luminosity relation is used to standardize the SN peak magnitudes.

16,838 citations

Journal ArticleDOI
TL;DR: In this article, the authors used spectral and photometric observations of 10 Type Ia supernovae (SNe Ia) in the redshift range 0.16 " z " 0.62.
Abstract: We present spectral and photometric observations of 10 Type Ia supernovae (SNe Ia) in the redshift range 0.16 " z " 0.62. The luminosity distances of these objects are determined by methods that employ relations between SN Ia luminosity and light curve shape. Combined with previous data from our High-z Supernova Search Team and recent results by Riess et al., this expanded set of 16 high-redshift supernovae and a set of 34 nearby supernovae are used to place constraints on the following cosmo- logical parameters: the Hubble constant the mass density the cosmological constant (i.e., the (H 0 ), () M ), vacuum energy density, the deceleration parameter and the dynamical age of the universe ) " ), (q 0 ), ) M \ 1) methods. We estimate the dynamical age of the universe to be 14.2 ^ 1.7 Gyr including systematic uncer- tainties in the current Cepheid distance scale. We estimate the likely e†ect of several sources of system- atic error, including progenitor and metallicity evolution, extinction, sample selection bias, local perturbations in the expansion rate, gravitational lensing, and sample contamination. Presently, none of these e†ects appear to reconcile the data with and ) " \ 0 q 0 " 0.

16,674 citations

Journal ArticleDOI
TL;DR: In this article, a combination of seven-year data from WMAP and improved astrophysical data rigorously tests the standard cosmological model and places new constraints on its basic parameters and extensions.
Abstract: The combination of seven-year data from WMAP and improved astrophysical data rigorously tests the standard cosmological model and places new constraints on its basic parameters and extensions. By combining the WMAP data with the latest distance measurements from the baryon acoustic oscillations (BAO) in the distribution of galaxies and the Hubble constant (H0) measurement, we determine the parameters of the simplest six-parameter ΛCDM model. The power-law index of the primordial power spectrum is ns = 0.968 ± 0.012 (68% CL) for this data combination, a measurement that excludes the Harrison–Zel’dovich–Peebles spectrum by 99.5% CL. The other parameters, including those beyond the minimal set, are also consistent with, and improved from, the five-year results. We find no convincing deviations from the minimal model. The seven-year temperature power spectrum gives a better determination of the third acoustic peak, which results in a better determination of the redshift of the matter-radiation equality epoch. Notable examples of improved parameters are the total mass of neutrinos, � mν < 0.58 eV (95% CL), and the effective number of neutrino species, Neff = 4.34 +0.86 −0.88 (68% CL), which benefit from better determinations of the third peak and H0. The limit on a constant dark energy equation of state parameter from WMAP+BAO+H0, without high-redshift Type Ia supernovae, is w =− 1.10 ± 0.14 (68% CL). We detect the effect of primordial helium on the temperature power spectrum and provide a new test of big bang nucleosynthesis by measuring Yp = 0.326 ± 0.075 (68% CL). We detect, and show on the map for the first time, the tangential and radial polarization patterns around hot and cold spots of temperature fluctuations, an important test of physical processes at z = 1090 and the dominance of adiabatic scalar fluctuations. The seven-year polarization data have significantly improved: we now detect the temperature–E-mode polarization cross power spectrum at 21σ , compared with 13σ from the five-year data. With the seven-year temperature–B-mode cross power spectrum, the limit on a rotation of the polarization plane due to potential parity-violating effects has improved by 38% to Δα =− 1. 1 ± 1. 4(statistical) ± 1. 5(systematic) (68% CL). We report significant detections of the Sunyaev–Zel’dovich (SZ) effect at the locations of known clusters of galaxies. The measured SZ signal agrees well with the expected signal from the X-ray data on a cluster-by-cluster basis. However, it is a factor of 0.5–0.7 times the predictions from “universal profile” of Arnaud et al., analytical models, and hydrodynamical simulations. We find, for the first time in the SZ effect, a significant difference between the cooling-flow and non-cooling-flow clusters (or relaxed and non-relaxed clusters), which can explain some of the discrepancy. This lower amplitude is consistent with the lower-than-theoretically expected SZ power spectrum recently measured by the South Pole Telescope Collaboration.

11,309 citations

Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, Monique Arnaud3, M. Ashdown4  +334 moreInstitutions (82)
TL;DR: In this article, the authors present a cosmological analysis based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation.
Abstract: This paper presents cosmological results based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation. Our results are in very good agreement with the 2013 analysis of the Planck nominal-mission temperature data, but with increased precision. The temperature and polarization power spectra are consistent with the standard spatially-flat 6-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations (denoted “base ΛCDM” in this paper). From the Planck temperature data combined with Planck lensing, for this cosmology we find a Hubble constant, H0 = (67.8 ± 0.9) km s-1Mpc-1, a matter density parameter Ωm = 0.308 ± 0.012, and a tilted scalar spectral index with ns = 0.968 ± 0.006, consistent with the 2013 analysis. Note that in this abstract we quote 68% confidence limits on measured parameters and 95% upper limits on other parameters. We present the first results of polarization measurements with the Low Frequency Instrument at large angular scales. Combined with the Planck temperature and lensing data, these measurements give a reionization optical depth of τ = 0.066 ± 0.016, corresponding to a reionization redshift of . These results are consistent with those from WMAP polarization measurements cleaned for dust emission using 353-GHz polarization maps from the High Frequency Instrument. We find no evidence for any departure from base ΛCDM in the neutrino sector of the theory; for example, combining Planck observations with other astrophysical data we find Neff = 3.15 ± 0.23 for the effective number of relativistic degrees of freedom, consistent with the value Neff = 3.046 of the Standard Model of particle physics. The sum of neutrino masses is constrained to ∑ mν < 0.23 eV. The spatial curvature of our Universe is found to be very close to zero, with | ΩK | < 0.005. Adding a tensor component as a single-parameter extension to base ΛCDM we find an upper limit on the tensor-to-scalar ratio of r0.002< 0.11, consistent with the Planck 2013 results and consistent with the B-mode polarization constraints from a joint analysis of BICEP2, Keck Array, and Planck (BKP) data. Adding the BKP B-mode data to our analysis leads to a tighter constraint of r0.002 < 0.09 and disfavours inflationarymodels with a V(φ) ∝ φ2 potential. The addition of Planck polarization data leads to strong constraints on deviations from a purely adiabatic spectrum of fluctuations. We find no evidence for any contribution from isocurvature perturbations or from cosmic defects. Combining Planck data with other astrophysical data, including Type Ia supernovae, the equation of state of dark energy is constrained to w = −1.006 ± 0.045, consistent with the expected value for a cosmological constant. The standard big bang nucleosynthesis predictions for the helium and deuterium abundances for the best-fit Planck base ΛCDM cosmology are in excellent agreement with observations. We also constraints on annihilating dark matter and on possible deviations from the standard recombination history. In neither case do we find no evidence for new physics. The Planck results for base ΛCDM are in good agreement with baryon acoustic oscillation data and with the JLA sample of Type Ia supernovae. However, as in the 2013 analysis, the amplitude of the fluctuation spectrum is found to be higher than inferred from some analyses of rich cluster counts and weak gravitational lensing. We show that these tensions cannot easily be resolved with simple modifications of the base ΛCDM cosmology. Apart from these tensions, the base ΛCDM cosmology provides an excellent description of the Planck CMB observations and many other astrophysical data sets.

10,728 citations

Journal ArticleDOI
TL;DR: In this article, the authors find that the emerging standard model of cosmology, a flat -dominated universe seeded by a nearly scale-invariant adiabatic Gaussian fluctuations, fits the WMAP data.
Abstract: WMAP precision data enable accurate testing of cosmological models. We find that the emerging standard model of cosmology, a flat � -dominated universe seeded by a nearly scale-invariant adiabatic Gaussian fluctuations, fits the WMAP data. For the WMAP data only, the best-fit parameters are h ¼ 0:72 � 0:05, � bh 2 ¼ 0:024 � 0:001, � mh 2 ¼ 0:14 � 0:02, � ¼ 0:166 þ0:076 � 0:071 , ns ¼ 0:99 � 0:04, and � 8 ¼ 0:9 � 0:1. With parameters fixed only by WMAP data, we can fit finer scale cosmic microwave background (CMB) measure- ments and measurements of large-scale structure (galaxy surveys and the Lyforest). This simple model is also consistent with a host of other astronomical measurements: its inferred age of the universe is consistent with stellar ages, the baryon/photon ratio is consistent with measurements of the (D/H) ratio, and the inferred Hubble constant is consistent with local observations of the expansion rate. We then fit the model parameters to a combination of WMAP data with other finer scale CMB experiments (ACBAR and CBI), 2dFGRS measurements, and Lyforest data to find the model's best-fit cosmological parameters: h ¼ 0:71 þ0:04 � 0:03 , � bh 2 ¼ 0:0224 � 0:0009, � mh 2 ¼ 0:135 þ0:008 � 0:009 , � ¼ 0:17 � 0:06, ns(0.05 Mpc � 1 )=0 :93 � 0:03, and � 8 ¼ 0:84 � 0:04. WMAP's best determination of � ¼ 0:17 � 0:04 arises directly from the temperature- polarization (TE) data and not from this model fit, but they are consistent. These parameters imply that the age of the universe is 13:7 � 0:2 Gyr. With the Lyforest data, the model favors but does not require a slowly varying spectral index. The significance of this running index is sensitive to the uncertainties in the Ly� forest. By combining WMAP data with other astronomical data, we constrain the geometry of the universe, � tot ¼ 1:02 � 0:02, and the equation of state of the dark energy, w < � 0:78 (95% confidence limit assuming w �� 1). The combination of WMAP and 2dFGRS data constrains the energy density in stable neutrinos: � � h 2 < 0:0072 (95% confidence limit). For three degenerate neutrino species, this limit implies that their mass is less than 0.23 eV (95% confidence limit). The WMAP detection of early reionization rules out warm dark matter. Subject headings: cosmic microwave background — cosmological parameters — cosmology: observations — early universe On-line material: color figure

10,650 citations