scispace - formally typeset
Search or ask a question
Author

I. Slaper-Cortenbach

Bio: I. Slaper-Cortenbach is an academic researcher. The author has contributed to research in topics: Stem cell transplantation for articular cartilage repair & Clinical uses of mesenchymal stem cells. The author has an hindex of 4, co-authored 4 publications receiving 16534 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The Mesenchymal and Tissue Stem Cell Committee of the International Society for Cellular Therapy proposes minimal criteria to define human MSC, believing this minimal set of standard criteria will foster a more uniform characterization of MSC and facilitate the exchange of data among investigators.

14,724 citations

Journal ArticleDOI
TL;DR: The mesenchymal stromal cells (MSC) as mentioned in this paper have been proposed as a more scientifically correct nomenclature for the fibroblast-like cells, regardless of the tissue from which they are isolated.

1,702 citations

01 Jan 2005
TL;DR: It is suggested that the fibroblast-like plastic-adherent cells, regardless of the tissue from which they are isolated, be termed multipotent mesenchymal stromal cells, while the term mesenchyal stem cells is used only for cells that meet specified stem cell criteria.
Abstract: The plastic-adherent cells isolated from BM and other sources have come to be widely known as mesenchymal stem cells (MSC). However, the recognized biologic properties of the unfractionated population of cells do not seem to meet generally accepted criteria for stem cell activity, rendering the name scientifically inaccurate and potentially misleading to the lay public. Nonetheless, a bona fide MSC most certainly exists. To address this inconsistency between nomenclature and biologic properties, and to clarify the terminology, we suggest that the fibroblast-like plastic-adherent cells, regardless of the tissue from which they are isolated, be termed multipotent mesenchymal stromal cells, while the term mesenchymal stem cells is used only for cells that meet specified stem cell criteria. The widely recognized acronym, MSC, may be used for both cell populations, as is the current practice; thus, investigators must clearly define the more scientifically correct designation in their reports. The International Society for Cellular Therapy (ISCT) encourages the scientific community to adopt this uniform nomenclature in all written and oral communications.

1,699 citations

01 Jan 2006
TL;DR: The Mesenchymal and Tissue Stem Cell Committee of the International Society for Cellular Therapy as discussed by the authors proposed minimal criteria to define human MSC, such as MSC must be plastic-adherent when maintained in standard culture conditions, MSC should express CD105, CD73 and CD90, and lack expression of CD45, CD34, CD14 or CD11b, CD79alpha or CD19 and HLA-DR surface molecules.
Abstract: The considerable therapeutic potential of human multipotent mesenchymal stromal cells (MSC) has generated markedly increasing interest in a wide variety of biomedical disciplines. However, investigators report studies of MSC using different methods of isolation and expansion, and different approaches to characterizing the cells. Thus it is increasingly difficult to compare and contrast study outcomes, which hinders progress in the field. To begin to address this issue, the Mesenchymal and Tissue Stem Cell Committee of the International Society for Cellular Therapy proposes minimal criteria to define human MSC. First, MSC must be plastic-adherent when maintained in standard culture conditions. Second, MSC must express CD105, CD73 and CD90, and lack expression of CD45, CD34, CD14 or CD11b, CD79alpha or CD19 and HLA-DR surface molecules. Third, MSC must differentiate to osteoblasts, adipocytes and chondroblasts in vitro. While these criteria will probably require modification as new knowledge unfolds, we believe this minimal set of standard criteria will foster a more uniform characterization of MSC and facilitate the exchange of data among investigators.

606 citations

Journal ArticleDOI
TL;DR: A review of international standardization in hematopoietic cell transplantation can be found in this paper , highlighting the need for continual maintenance and enhancement of standards to meet the changing needs of the cell therapy industry and highlights recent developments in ISBT 128.

3 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The Mesenchymal and Tissue Stem Cell Committee of the International Society for Cellular Therapy proposes minimal criteria to define human MSC, believing this minimal set of standard criteria will foster a more uniform characterization of MSC and facilitate the exchange of data among investigators.

14,724 citations

Journal ArticleDOI
TL;DR: 3D bioprinting is being applied to regenerative medicine to address the need for tissues and organs suitable for transplantation and developing high-throughput 3D-bioprinted tissue models for research, drug discovery and toxicology.
Abstract: Additive manufacturing, otherwise known as three-dimensional (3D) printing, is driving major innovations in many areas, such as engineering, manufacturing, art, education and medicine. Recent advances have enabled 3D printing of biocompatible materials, cells and supporting components into complex 3D functional living tissues. 3D bioprinting is being applied to regenerative medicine to address the need for tissues and organs suitable for transplantation. Compared with non-biological printing, 3D bioprinting involves additional complexities, such as the choice of materials, cell types, growth and differentiation factors, and technical challenges related to the sensitivities of living cells and the construction of tissues. Addressing these complexities requires the integration of technologies from the fields of engineering, biomaterials science, cell biology, physics and medicine. 3D bioprinting has already been used for the generation and transplantation of several tissues, including multilayered skin, bone, vascular grafts, tracheal splints, heart tissue and cartilaginous structures. Other applications include developing high-throughput 3D-bioprinted tissue models for research, drug discovery and toxicology.

4,841 citations

Journal ArticleDOI
TL;DR: The targets and mechanisms of M SC-mediated immunomodulation and the possible translation of MSCs to new therapeutic approaches are discussed.
Abstract: Mesenchymal stem cells (MSCs) are a heterogeneous subset of stromal stem cells that can be isolated from many adult tissues. They can differentiate into cells of the mesodermal lineage, such as adipocytes, osteocytes and chondrocytes, as well as cells of other embryonic lineages. MSCs can interact with cells of both the innate and adaptive immune systems, leading to the modulation of several effector functions. After in vivo administration, MSCs induce peripheral tolerance and migrate to injured tissues, where they can inhibit the release of pro-inflammatory cytokines and promote the survival of damaged cells. This Review discusses the targets and mechanisms of MSC-mediated immunomodulation and the possible translation of MSCs to new therapeutic approaches.

3,142 citations

Journal ArticleDOI
TL;DR: Cancer-associated fibroblasts (CAFs) become synthetic machines that produce many different tumour components and have a role in creating extracellular matrix structure and metabolic and immune reprogramming of the tumour microenvironment with an impact on adaptive resistance to chemotherapy.
Abstract: Cancer is associated with fibroblasts at all stages of disease progression. This Review discusses the pleiotropic actions of cancer-associated fibroblasts (CAFs) on tumour cells and postulates that they are likely to be a heterogeneous and plastic population of cells in the tumour microenvironment. Among all cells, fibroblasts could be considered the cockroaches of the human body. They survive severe stress that is usually lethal to all other cells, and they are the only normal cell type that can be live-cultured from post-mortem and decaying tissue. Their resilient adaptation may reside in their intrinsic survival programmes and cellular plasticity. Cancer is associated with fibroblasts at all stages of disease progression, including metastasis, and they are a considerable component of the general host response to tissue damage caused by cancer cells. Cancer-associated fibroblasts (CAFs) become synthetic machines that produce many different tumour components. CAFs have a role in creating extracellular matrix (ECM) structure and metabolic and immune reprogramming of the tumour microenvironment with an impact on adaptive resistance to chemotherapy. The pleiotropic actions of CAFs on tumour cells are probably reflective of them being a heterogeneous and plastic population with context-dependent influence on cancer.

2,597 citations

Journal ArticleDOI
TL;DR: Infusion of mesenchymal stem cells expanded in vitro, irrespective of the donor, might be an effective therapy for patients with steroid-resistant, acute GVHD.

2,510 citations