scispace - formally typeset
Search or ask a question
Author

Iain B. Collings

Bio: Iain B. Collings is an academic researcher from Macquarie University. The author has contributed to research in topics: MIMO & Fading. The author has an hindex of 45, co-authored 372 publications receiving 7568 citations. Previous affiliations of Iain B. Collings include University of Sydney & Commonwealth Scientific and Industrial Research Organisation.
Topics: MIMO, Fading, Rayleigh fading, Relay, Precoding


Papers
More filters
Journal ArticleDOI
TL;DR: It is proved that under the proposed protocols, the secrecy outage probability and the ε-outage secrecy capacity improve with increasing NA, as well as the secrecy diversity order and the secrecy array gain.
Abstract: We propose and analyze transmit antenna selection (TAS) to enhance physical layer security in a wiretap channel with NA antennas at the transmitter, NB antennas at the receiver, and NE antennas at the eavesdropper. We focus on the practical scenario where the transmitter does not have any channel state information (CSI) of the eavesdropper's channel. The transmitter selects a single antenna that maximizes the instantaneous signal-to-noise ratio (SNR) at the receiver. The receiver and the eavesdropper employ either maximal-ratio combining (MRC) or selection combining (SC) to combine the received signals. For the proposed protocols, we derive new closed-form expressions for the probability of non-zero secrecy capacity. We consider Nakagami-m fading with non-identical fading parameters of the main channel, mB, and of the eavesdropper's channel, mE. Next, we derive new closed-form expressions for the exact secrecy outage probability, based on which the e-outage secrecy capacity is characterized. Based on the exact expressions, we derive the asymptotic secrecy outage probability which accurately reveals the secrecy diversity order and the secrecy array gain. We confirm that the proposed protocols achieve identical secrecy diversity orders of NANBmB. An interesting conclusion is reached that this diversity order is independent of NE and mE. Furthermore, we prove that under the proposed protocols, the secrecy outage probability and the e-outage secrecy capacity improve with increasing NA.

424 citations

Journal ArticleDOI
TL;DR: The new expressions are used to prove that MIMO-MRC achieves the maximum available spatial diversity order, and to demonstrate the effect of spatial correlation.
Abstract: We consider multiple-input multiple-output (MIMO) transmit beamforming systems with maximum ratio combining (MRC) receivers The operating environment is Rayleigh fading with both transmit and receive spatial correlation We present exact expressions for the probability density function (pdf) of the output signal-to-noise ratio, as well as the system outage probability The results are based on explicit closed-form expressions which we derive for the pdf and cumulative distribution function of the maximum eigenvalue of double-correlated complex Wishart matrices For systems with two antennas at either the transmitter or the receiver, we also derive exact closed-form expressions for the symbol-error rate The new expressions are used to prove that MIMO-MRC achieves the maximum available spatial diversity order, and to demonstrate the effect of spatial correlation The analysis is validated through comparison with Monte Carlo simulations

297 citations

Journal ArticleDOI
TL;DR: The capacity of spatially correlated Rician multiple-input multiple-output (MIMO) channels in the general case with double-sided correlation and arbitrary rank channel means is considered and tight upper and lower bounds on the ergodic capacity are derived.
Abstract: This paper considers the capacity of spatially correlated Rician multiple-input multiple-output (MIMO) channels. We consider the general case with double-sided correlation and arbitrary rank channel means. We derive tight upper and lower bounds on the ergodic capacity. In the particular cases when the numbers of transmit and receive antennas are equal, or when the correlation is single sided, we derive more specific bounds which are computationally efficient. The bounds are shown to reduce to known results in cases of independent and identically distributed (i.i.d.) and correlated Rayleigh MIMO channels. We also analyze the outage characteristics of the correlated Rician MIMO channels at high signal-to-noise ratio (SNR). We derive the mean and variance of the mutual information and show that it is well approximated by a Gaussian distribution. Finally, we present numerical results which show the effect of the antenna configuration, correlation level (angle spreads), Rician K-factor, and the geometry of the dominant Rician paths.

226 citations

Journal ArticleDOI
TL;DR: The impact of antenna correlation on secrecy performance of multiple-input multiple-output wiretap channels where transmitter employs transmit antenna selection while receiver and eavesdropper perform maximal-ratio combining with arbitrary correlation is analyzed.
Abstract: We analyze the impact of antenna correlation on secrecy performance of multiple-input multiple-output wiretap channels where transmitter employs transmit antenna selection while receiver and eavesdropper perform maximal-ratio combining with arbitrary correlation. New closed-form expressions are derived for the exact and asymptotic (high signal-to-noise ratio in transmitter-receiver channel) secrecy outage probability.

202 citations

Journal ArticleDOI
TL;DR: This paper considers the analysis of optimum combining systems in the presence of both co-channel interference and thermal noise and derives exact closed-form expressions for the moments of the SINR in the cases where either the desired-user or the interferers undergo Rician fading.
Abstract: This paper considers the analysis of optimum combining systems in the presence of both co-channel interference and thermal noise. We address the cases where either the desired-user or the interferers undergo Rician fading. Exact expressions are derived for the moment generating function of the SINR which apply for arbitrary numbers of antennas and interferers. Based on these, we obtain expressions for the symbol error probability with M-PSK. For the case where the desired-user undergoes Rician fading, we also derive exact closed-form expressions for the moments of the SINR. We show that these moments are directly related to the corresponding moments of a Rayleigh system via a simple scaling parameter, which is investigated in detail. Numerical results are presented to validate the analysis and to examine the impact of Rician fading on performance.

183 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

BookDOI
01 Jan 2001
TL;DR: This book presents the first comprehensive treatment of Monte Carlo techniques, including convergence results and applications to tracking, guidance, automated target recognition, aircraft navigation, robot navigation, econometrics, financial modeling, neural networks, optimal control, optimal filtering, communications, reinforcement learning, signal enhancement, model averaging and selection.
Abstract: Monte Carlo methods are revolutionizing the on-line analysis of data in fields as diverse as financial modeling, target tracking and computer vision. These methods, appearing under the names of bootstrap filters, condensation, optimal Monte Carlo filters, particle filters and survival of the fittest, have made it possible to solve numerically many complex, non-standard problems that were previously intractable. This book presents the first comprehensive treatment of these techniques, including convergence results and applications to tracking, guidance, automated target recognition, aircraft navigation, robot navigation, econometrics, financial modeling, neural networks, optimal control, optimal filtering, communications, reinforcement learning, signal enhancement, model averaging and selection, computer vision, semiconductor design, population biology, dynamic Bayesian networks, and time series analysis. This will be of great value to students, researchers and practitioners, who have some basic knowledge of probability. Arnaud Doucet received the Ph. D. degree from the University of Paris-XI Orsay in 1997. From 1998 to 2000, he conducted research at the Signal Processing Group of Cambridge University, UK. He is currently an assistant professor at the Department of Electrical Engineering of Melbourne University, Australia. His research interests include Bayesian statistics, dynamic models and Monte Carlo methods. Nando de Freitas obtained a Ph.D. degree in information engineering from Cambridge University in 1999. He is presently a research associate with the artificial intelligence group of the University of California at Berkeley. His main research interests are in Bayesian statistics and the application of on-line and batch Monte Carlo methods to machine learning. Neil Gordon obtained a Ph.D. in Statistics from Imperial College, University of London in 1993. He is with the Pattern and Information Processing group at the Defence Evaluation and Research Agency in the United Kingdom. His research interests are in time series, statistical data analysis, and pattern recognition with a particular emphasis on target tracking and missile guidance.

6,574 citations

Journal ArticleDOI
TL;DR: The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time.
Abstract: Multiple-input multiple-output (MIMO) technology is maturing and is being incorporated into emerging wireless broadband standards like long-term evolution (LTE) [1]. For example, the LTE standard allows for up to eight antenna ports at the base station. Basically, the more antennas the transmitter/receiver is equipped with, and the more degrees of freedom that the propagation channel can provide, the better the performance in terms of data rate or link reliability. More precisely, on a quasi static channel where a code word spans across only one time and frequency coherence interval, the reliability of a point-to-point MIMO link scales according to Prob(link outage) ` SNR-ntnr where nt and nr are the numbers of transmit and receive antennas, respectively, and signal-to-noise ratio is denoted by SNR. On a channel that varies rapidly as a function of time and frequency, and where circumstances permit coding across many channel coherence intervals, the achievable rate scales as min(nt, nr) log(1 + SNR). The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time [2].

5,158 citations

Journal ArticleDOI
TL;DR: The technical and business arguments for femtocells are overview and the state of the art on each front is described and the technical challenges facing femtocell networks are described and some preliminary ideas for how to overcome them are given.
Abstract: The surest way to increase the system capacity of a wireless link is by getting the transmitter and receiver closer to each other, which creates the dual benefits of higher-quality links and more spatial reuse. In a network with nomadic users, this inevitably involves deploying more infrastructure, typically in the form of microcells, hot spots, distributed antennas, or relays. A less expensive alternative is the recent concept of femtocells - also called home base stations - which are data access points installed by home users to get better indoor voice and data coverage. In this article we overview the technical and business arguments for femtocells and describe the state of the art on each front. We also describe the technical challenges facing femtocell networks and give some preliminary ideas for how to overcome them.

3,298 citations