scispace - formally typeset
Search or ask a question
Author

Iain G. Duggin

Bio: Iain G. Duggin is an academic researcher from University of Technology, Sydney. The author has contributed to research in topics: Haloferax volcanii & FtsZ. The author has an hindex of 16, co-authored 51 publications receiving 999 citations. Previous affiliations of Iain G. Duggin include Medical Research Council & Children's Medical Research Institute.


Papers
More filters
Journal ArticleDOI
19 Mar 2015-Nature
TL;DR: The findings expand the known roles of the FtsZ/tubulin superfamily to include archaeal cell shape dynamics, suggesting that a cytoskeletal role might predate eukaryotic cell evolution, and they support the premise that a major function of the microbial rod shape is to facilitate swimming.
Abstract: The structure and function of CetZ, a protein related to both tubulin and FtsZ (the bacterial homologue of tubulin) from the archaeon Haloferax volcanii, is reported and its involvement in the control of cell shape uncovered; it appears that this family of proteins was involved in the control of cell shape long before the evolution of eukaryotes. One of the distinguishing features of the eukaryotic cell is the cytoskeleton, a network of fibres that give the cell shape and are important in processes such as cell division. Bacteria do not have a cytoskeleton, but they do have a protein FtsZ, homologous with the eukaryotic protein tubulin, which establishes the cytokinetic ring which constricts during cell division. How the different roles of tubulin and FtsZ evolved is not known, but the answer could lie in the archaea, the third major domain of life. Iain Duggin et al. report the structure and function of CetZ, a protein related to both tubulin and FtsZ from the archaeon Haloferax volcanii, which is involved in the control of cell shape. The results suggest that this family of proteins was involved in the control of cell shape long before the evolution of eukaryotes. Tubulin is a major component of the eukaryotic cytoskeleton, controlling cell shape, structure and dynamics, whereas its bacterial homologue FtsZ establishes the cytokinetic ring that constricts during cell division1,2. How such different roles of tubulin and FtsZ evolved is unknown. Studying Archaea may provide clues as these organisms share characteristics with Eukarya and Bacteria3. Here we report the structure and function of proteins from a distinct family related to tubulin and FtsZ, named CetZ, which co-exists with FtsZ in many archaea. CetZ X-ray crystal structures showed the FtsZ/tubulin superfamily fold, and one crystal form contained sheets of protofilaments, suggesting a structural role. However, inactivation of CetZ proteins in Haloferax volcanii did not affect cell division. Instead, CetZ1 was required for differentiation of the irregular plate-shaped cells into a rod-shaped cell type that was essential for normal swimming motility. CetZ1 formed dynamic cytoskeletal structures in vivo, relating to its capacity to remodel the cell envelope and direct rod formation. CetZ2 was also implicated in H. volcanii cell shape control. Our findings expand the known roles of the FtsZ/tubulin superfamily to include archaeal cell shape dynamics, suggesting that a cytoskeletal role might predate eukaryotic cell evolution, and they support the premise that a major function of the microbial rod shape is to facilitate swimming.

125 citations

Journal ArticleDOI
TL;DR: In this paper, high-density DNA microarrays were used to characterize the genome-wide transcriptional response of the hyperthermophilic, aerobic crenarchaeote Sulfolobus solfataricus to UV damage.
Abstract: In order to characterize the genome-wide transcriptional response of the hyperthermophilic, aerobic crenarchaeote Sulfolobus solfataricus to UV damage, we used high-density DNA microarrays which covered 3,368 genetic features encoded on the host genome, as well as the genes of several extrachromosomal genetic elements. While no significant up-regulation of genes potentially involved in direct DNA damage reversal was observed, a specific transcriptional UV response involving 55 genes could be dissected. Although flow cytometry showed only modest perturbation of the cell cycle, strong modulation of the transcript levels of the Cdc6 replication initiator genes was observed. Up-regulation of an operon encoding Mre11 and Rad50 homologs pointed to induction of recombinational repair. Consistent with this, DNA double-strand breaks were observed between 2 and 8 h after UV treatment, possibly resulting from replication fork collapse at damaged DNA sites. The strong transcriptional induction of genes which potentially encode functions for pilus formation suggested that conjugational activity might lead to enhanced exchange of genetic material. In support of this, a statistical microscopic analysis demonstrated that large cell aggregates formed upon UV exposure. Together, this provided supporting evidence to a link between recombinational repair and conjugation events.

125 citations

Journal ArticleDOI
TL;DR: This work reviews the research that led to the replication fork trap theory, and aims to integrate several recent findings that contribute towards an understanding of the physiological roles of the replication forks trap.
Abstract: Bacteria that have a circular chromosome with a bidirectional DNA replication origin are thought to utilize a 'replication fork trap' to control termination of replication. The fork trap is an arrangement of replication pause sites that ensures that the two replication forks fuse within the terminus region of the chromosome, approximately opposite the origin on the circular map. However, the biological significance of the replication fork trap has been mysterious, as its inactivation has no obvious consequence. Here we review the research that led to the replication fork trap theory, and we aim to integrate several recent findings that contribute towards an understanding of the physiological roles of the replication fork trap. Likely roles include the prevention of over-replication, and the optimization of post-replicative mechanisms of chromosome segregation, such as that involving FtsK in Escherichia coli.

110 citations

Journal ArticleDOI
TL;DR: Quantification of fork pausing at the Ter sites in both their native chromosomal context and the plasmid context further supported the fork trap model.

77 citations

Journal ArticleDOI
TL;DR: The nutritional and metabolic requirements for UPEC infection in these environments are described, and particular metabolic responses and adaptations of UPEC that appear to be essential for survival in the urinary tract are focused on.
Abstract: Escherichia coli ordinarily resides in the lower gastrointestinal tract in humans, but some strains, known as Uropathogenic E. coli (UPEC), are also adapted to the relatively harsh environment of the urinary tract. Infections of the urine, bladder and kidneys by UPEC may lead to potentially fatal bloodstream infections. To survive this range of conditions, UPEC strains must have broad and flexible metabolic capabilities and efficiently utilize scarce essential nutrients. Whole-organism (or “omics”) methods have recently provided significant advances in our understanding of the importance of metabolic adaptation in the success of UPECs. Here we describe the nutritional and metabolic requirements for UPEC infection in these environments, and focus on particular metabolic responses and adaptations of UPEC that appear to be essential for survival in the urinary tract.

74 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Comparing results from the wild-type and MMR-defective strains may lead to a deeper understanding of factors that determine mutation rates and spectra, how these factors may differ among organisms, and how they may be shaped by environmental conditions.
Abstract: Knowledge of the rate and nature of spontaneous mutation is fundamental to understanding evolutionary and molecular processes. In this report, we analyze spontaneous mutations accumulated over thousands of generations by wild-type Escherichia coli and a derivative defective in mismatch repair (MMR), the primary pathway for correcting replication errors. The major conclusions are (i) the mutation rate of a wild-type E. coli strain is ∼1 × 10−3 per genome per generation; (ii) mutations in the wild-type strain have the expected mutational bias for G:C > A:T mutations, but the bias changes to A:T > G:C mutations in the absence of MMR; (iii) during replication, A:T > G:C transitions preferentially occur with A templating the lagging strand and T templating the leading strand, whereas G:C > A:T transitions preferentially occur with C templating the lagging strand and G templating the leading strand; (iv) there is a strong bias for transition mutations to occur at 5′ApC3′/3′TpG5′ sites (where bases 5′A and 3′T are mutated) and, to a lesser extent, at 5′GpC3′/3′CpG5′ sites (where bases 5′G and 3′C are mutated); (v) although the rate of small (≤4 nt) insertions and deletions is high at repeat sequences, these events occur at only 1/10th the genomic rate of base-pair substitutions. MMR activity is genetically regulated, and bacteria isolated from nature often lack MMR capacity, suggesting that modulation of MMR can be adaptive. Thus, comparing results from the wild-type and MMR-defective strains may lead to a deeper understanding of factors that determine mutation rates and spectra, how these factors may differ among organisms, and how they may be shaped by environmental conditions.

606 citations

Journal ArticleDOI
TL;DR: The wide range of cell wall polymers, O- and N-glycosylated extracellular proteins and other cell surface structures that archaea use to interact with their environment are described.
Abstract: At first glance, archaea and bacteria look alike; however, the composition of the archaeal cell envelope is fundamentally different from the bacterial cell envelope. With just one exception, all archaea characterized to date have only a single membrane and most are covered by a paracrystalline protein layer. This Review discusses our current knowledge of the composition of the archaeal cell surface. We describe the wide range of cell wall polymers, O- and N-glycosylated extracellular proteins and other cell surface structures that archaea use to interact with their environment.

435 citations

Journal ArticleDOI
TL;DR: The study of the putative in vivo roles of recently identified eukaryotic factors in fork remodelling promises to shed new light on mechanisms of genome maintenance and to provide novel attractive targets for cancer therapy.
Abstract: The remodelling of replication forks into four-way junctions following replication perturbation, known as fork reversal, was hypothesized to promote DNA damage tolerance and repair during replication. Albeit conceptually attractive, for a long time fork reversal in vivo was found only in prokaryotes and specific yeast mutants, calling its evolutionary conservation and physiological relevance into question. Based on the recent visualization of replication forks in metazoans, fork reversal has emerged as a global, reversible and regulated process, with intriguing implications for replication completion, chromosome integrity and the DNA damage response. The study of the putative in vivo roles of recently identified eukaryotic factors in fork remodelling promises to shed new light on mechanisms of genome maintenance and to provide novel attractive targets for cancer therapy.

388 citations

Journal ArticleDOI
12 Dec 2008-Science
TL;DR: It is found that Sulfolobus ESCRT-III and Vps4 homologs underwent regulation of their expression during the cell cycle, and these proteins specifically localized to the mid-cell during cell division.
Abstract: Archaea are prokaryotic organisms that lack endomembrane structures. However, a number of hyperthermophilic members of the Kingdom Crenarchaea, including members of the Sulfolobus genus, encode homologs of the eukaryotic endosomal sorting system components Vps4 and ESCRT-III (endosomal sorting complex required for transport–III). We found that Sulfolobus ESCRT-III and Vps4 homologs underwent regulation of their expression during the cell cycle. The proteins interacted and we established the structural basis of this interaction. Furthermore, these proteins specifically localized to the mid-cell during cell division. Overexpression of a catalytically inactive mutant Vps4 in Sulfolobus resulted in the accumulation of enlarged cells, indicative of failed cell division. Thus, the archaeal ESCRT system plays a key role in cell division.

337 citations

Journal ArticleDOI
TL;DR: Two of the Cdv proteins display homology to components of the eukaryotic ESCRT-III sorting complex involved in budding of luminal vesicles and HIV-1 virion release, suggesting mechanistic similarities and a common evolutionary origin.
Abstract: In contrast to the cell division machineries of bacteria, euryarchaea, and eukaryotes, no division components have been identified in the second main archaeal phylum, Crenarchaeota. Here, we demonstrate that a three-gene operon, cdv, in the crenarchaeon Sulfolobus acidocaldarius, forms part of a unique cell division machinery. The operon is induced at the onset of genome segregation and division, and the Cdv proteins then polymerize between segregating nucleoids and persist throughout cell division, forming a successively smaller structure during constriction. The cdv operon is dramatically down-regulated after UV irradiation, indicating division inhibition in response to DNA damage, reminiscent of eukaryotic checkpoint systems. The cdv genes exhibit a complementary phylogenetic range relative to FtsZ-based archaeal division systems such that, in most archaeal lineages, either one or the other system is present. Two of the Cdv proteins, CdvB and CdvC, display homology to components of the eukaryotic ESCRT-III sorting complex involved in budding of luminal vesicles and HIV-1 virion release, suggesting mechanistic similarities and a common evolutionary origin.

286 citations