scispace - formally typeset
Search or ask a question
Author

Iam-Choon Khoo

Bio: Iam-Choon Khoo is an academic researcher from Pennsylvania State University. The author has contributed to research in topics: Liquid crystal & Refractive index. The author has an hindex of 49, co-authored 330 publications receiving 9601 citations. Previous affiliations of Iam-Choon Khoo include Wayne State University & Foundation University, Islamabad.


Papers
More filters
Book
01 Jan 1993
TL;DR: Optical properties of liquid crystals electro-optical properties and nonlinear optical properties of nonlinear optics of liquid crystal nonlinear systems were studied in this paper, where liquid crystals were considered.
Abstract: Optical properties of liquid crystals electro-optical properties of liquid crystals nonlinear optical properties of liquid crystals nonlinear optics.

558 citations

Book
01 Dec 1994
TL;DR: In this paper, the authors present a survey of nonlinear optical properties observed in liquid crystals, including laser-induced nonelectronic optical nonlinearities in Liquid Crystals.
Abstract: Order Parameter, Phase Transition, and Free Energies. Nematic Liquid Crystals. Cholesteric, Smectic, and Ferroelectric Liquid Crystals. Light Scatterings. Laser--Induced Nonelectronic Optical Nonlinearities in Liquid Crystals. Thermal, Density, and Other Nonelectronic Nonlinear Mechanisms. Electronic Optical Nonlinearities. Introduction to Nonlinear Optics. Nonlinear Optical Phenomena Observed in Liquid Crystals. Index.

498 citations

Book ChapterDOI
18 May 2006
TL;DR: In this paper, a liquid crystal is defined as a mixture of a liquid and a columnar phase, and the following properties of the liquid crystal: 1 1.1 What is a Liquid Crystal? 2 1.2 Cholesterics.
Abstract: 1 What is a liquid crystal 2 1.1 Nematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Cholesterics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Smectics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 Columnar phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.5 Lyotropic liquid crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

325 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the optical nonlinearities of liquid crystals is presented, and a thorough review of a wide range of nonlinear optical processes and phenomena enabled by these unique properties.

324 citations

Journal ArticleDOI
TL;DR: In this article, spatial soliton formation and self/cross waveguiding in planar cells containing a nematic liquid crystal in the presence of an externally applied voltage were demonstrated with an Argon ion laser (514 nm) and a helium-neon probe (633 nm) over millimeter lengths and with milliwatt pump powers.
Abstract: We report on spatial soliton formation and self/cross waveguiding in planar cells containing a nematic liquid crystal in the presence of an externally applied voltage. Self-confinement and cross-induced guidance are demonstrated with an Argon ion laser (514 nm) and a helium–neon probe (633 nm), respectively, over millimeter lengths and with milliwatt pump powers.

306 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The radical-mediated thiol-ene reaction has all the desirable features of a click reaction, being highly efficient, simple to execute with no side products and proceeding rapidly to high yield.
Abstract: Following Sharpless' visionary characterization of several idealized reactions as click reactions, the materials science and synthetic chemistry communities have pursued numerous routes toward the identification and implementation of these click reactions. Herein, we review the radical-mediated thiol-ene reaction as one such click reaction. This reaction has all the desirable features of a click reaction, being highly efficient, simple to execute with no side products and proceeding rapidly to high yield. Further, the thiol-ene reaction is most frequently photoinitiated, particularly for photopolymerizations resulting in highly uniform polymer networks, promoting unique capabilities related to spatial and temporal control of the click reaction. The reaction mechanism and its implementation in various synthetic methodologies, biofunctionalization, surface and polymer modification, and polymerization are all reviewed.

3,229 citations

Proceedings Article
01 Jan 1999
TL;DR: In this paper, the authors describe photonic crystals as the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures, and the interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.
Abstract: The term photonic crystals appears because of the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures. During the recent years the investigation of one-, two-and three-dimensional periodic structures has attracted a widespread attention of the world optics community because of great potentiality of such structures in advanced applied optical fields. The interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.

2,722 citations

Journal ArticleDOI
TL;DR: In this paper, a review describes the recent progress made in creating nanostructured metamaterials with a negative index at optical wavelengths, and discusses some of the devices that could result from these new materials.
Abstract: Artificially engineered metamaterials are now demonstrating unprecedented electromagnetic properties that cannot be obtained with naturally occurring materials. In particular, they provide a route to creating materials that possess a negative refractive index and offer exciting new prospects for manipulating light. This review describes the recent progress made in creating nanostructured metamaterials with a negative index at optical wavelengths, and discusses some of the devices that could result from these new materials.

2,654 citations

Journal ArticleDOI
TL;DR: Nonlinear Optical Characterizations of Multiphoton Active Materials 1282 5.2.1.
Abstract: 4. Survey of Novel Multiphoton Active Materials 1257 4.1. Multiphoton Absorbing Systems 1257 4.2. Organic Molecules 1257 4.3. Organic Liquids and Liquid Crystals 1259 4.4. Conjugated Polymers 1259 4.4.1. Polydiacetylenes 1261 4.4.2. Polyphenylenevinylenes (PPVs) 1261 4.4.3. Polythiophenes 1263 4.4.4. Other Conjugated Polymers 1265 4.4.5. Dendrimers 1265 4.4.6. Hyperbranched Polymers 1267 4.5. Fullerenes 1267 4.6. Coordination and Organometallic Compounds 1271 4.6.1. Metal Dithiolenes 1271 4.6.2. Pyridine-Based Multidentate Ligands 1272 4.6.3. Other Transition-Metal Complexes 1273 4.6.4. Lanthanide Complexes 1275 4.6.5. Ferrocene Derivatives 1275 4.6.6. Alkynylruthenium Complexes 1279 4.6.7. Platinum Acetylides 1279 4.7. Porphyrins and Metallophophyrins 1279 4.8. Nanoparticles 1281 4.9. Biomolecules and Derivatives 1282 5. Nonlinear Optical Characterizations of Multiphoton Active Materials 1282

1,864 citations

Journal Article
TL;DR: In this article, a class of π;-conjugated compounds that exhibit large δ (as high as 1, 250 × 10−50 cm4 s per photon) and enhanced two-photon sensitivity relative to ultraviolet initiators were developed and used to demonstrate a scheme for three-dimensional data storage which permits fluorescent and refractive read-out, and the fabrication of 3D micro-optical and micromechanical structures, including photonic-bandgap-type structures.
Abstract: Two-photon excitation provides a means of activating chemical or physical processes with high spatial resolution in three dimensions and has made possible the development of three-dimensional fluorescence imaging, optical data storage, and lithographic microfabrication. These applications take advantage of the fact that the two-photon absorption probability depends quadratically on intensity, so under tight-focusing conditions, the absorption is confined at the focus to a volume of order λ3 (where λ is the laser wavelength). Any subsequent process, such as fluorescence or a photoinduced chemical reaction, is also localized in this small volume. Although three-dimensional data storage and microfabrication have been illustrated using two-photon-initiated polymerization of resins incorporating conventional ultraviolet-absorbing initiators, such photopolymer systems exhibit low photosensitivity as the initiators have small two-photon absorption cross-sections (δ). Consequently, this approach requires high laser power, and its widespread use remains impractical. Here we report on a class of π;-conjugated compounds that exhibit large δ (as high as 1, 250 × 10−50 cm4 s per photon) and enhanced two-photon sensitivity relative to ultraviolet initiators. Two-photon excitable resins based on these new initiators have been developed and used to demonstrate a scheme for three-dimensional data storage which permits fluorescent and refractive read-out, and the fabrication of three-dimensional micro-optical and micromechanical structures, including photonic-bandgap-type structures.

1,833 citations