scispace - formally typeset
Search or ask a question
Author

Ian A. Franchi

Bio: Ian A. Franchi is an academic researcher from Open University. The author has contributed to research in topics: Chondrite & Meteorite. The author has an hindex of 55, co-authored 388 publications receiving 11190 citations. Previous affiliations of Ian A. Franchi include Leiden University & Max Planck Society.
Topics: Chondrite, Meteorite, Parent body, Chondrule, Basalt


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the results from a second characterisation of the 91500 zircon, including data from electron probe microanalysis, laser ablation inductively coupled plasma-mass spectrometer (LA-ICP-MS), secondary ion mass spectrometry (SIMS), and laser fluorination analyses, were reported.
Abstract: This paper reports the results from a second characterisation of the 91500 zircon, including data from electron probe microanalysis, laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS), secondary ion mass spectrometry (SIMS) and laser fluorination analyses. The focus of this initiative was to establish the suitability of this large single zircon crystal for calibrating in situ analyses of the rare earth elements and oxygen isotopes, as well as to provide working values for key geochemical systems. In addition to extensive testing of the chemical and structural homogeneity of this sample, the occurrence of banding in 91500 in both backscattered electron and cathodoluminescence images is described in detail. Blind intercomparison data reported by both LA-ICP-MS and SIMS laboratories indicate that only small systematic differences exist between the data sets provided by these two techniques. Furthermore, the use of NIST SRM 610 glass as the calibrant for SIMS analyses was found to introduce little or no systematic error into the results for zircon. Based on both laser fluorination and SIMS data, zircon 91500 seems to be very well suited for calibrating in situ oxygen isotopic analyses.

1,131 citations

Journal ArticleDOI
15 Dec 2006-Science
TL;DR: The Stardust spacecraft collected thousands of particles from comet 81P/Wild 2 and returned them to Earth for laboratory study, and preliminary examination shows that the nonvolatile portion of the comet is an unequilibrated assortment of materials that have both presolar and solar system origin.
Abstract: The Stardust spacecraft collected thousands of particles from comet 81P/Wild 2 and returned them to Earth for laboratory study. The preliminary examination of these samples shows that the nonvolatile portion of the comet is an unequilibrated assortment of materials that have both presolar and solar system origin. The comet contains an abundance of silicate grains that are much larger than predictions of interstellar grain models, and many of these are high-temperature minerals that appear to have formed in the inner regions of the solar nebula. Their presence in a comet proves that the formation of the solar system included mixing on the grandest scales.

886 citations

Journal ArticleDOI
15 Dec 2006-Science
TL;DR: The presence of deuterium and nitrogen-15 excesses suggest that some organics have an interstellar/protostellar heritage and a diverse suite of organic compounds is present and identifiable within the returned samples.
Abstract: Organics found in comet 81P/Wild 2 samples show a heterogeneous and unequilibrated distribution in abundance and composition. Some organics are similar, but not identical, to those in interplanetary dust particles and carbonaceous meteorites. A class of aromatic-poor organic material is also present. The organics are rich in oxygen and nitrogen compared with meteoritic organics. Aromatic compounds are present, but the samples tend to be relatively poorer in aromatics than are meteorites and interplanetary dust particles. The presence of deuterium and nitrogen-15 excesses suggest that some organics have an interstellar/protostellar heritage. Although the variable extent of modification of these materials by impact capture is not yet fully constrained, a diverse suite of organic compounds is present and identifiable within the returned samples.

547 citations

Journal ArticleDOI
16 Jun 2005-Nature
TL;DR: It is shown that magma oceans were present on all the differentiated Solar System bodies so far sampled, and the modification of such bodies before incorporation into larger objects can explain some anomalous planetary features, such as Earth's high Mg/Si ratio.
Abstract: Our Solar System formed about 4.6 billion years ago, and within 4 million years small planetary bodies had formed, some melting to form volcanic and related rocks. Two families of meteorites (the HEDs and angrites) are thought to have originated from asteroids that melted at this time. New oxygen isotope measurements confirm that these meteorites are from two distinct asteroids that underwent large-scale melting in the early Solar System. These new results show that early, global-scale melting was a feature of all the differentiated planets (Earth, Moon and Mars) and asteroids so far sampled. Immediately following the formation of the Solar System, small planetary bodies accreted1, some of which melted to produce igneous rocks2,3. Over a longer timescale (15–33 Myr), the inner planets grew by incorporation of these smaller objects4,5 through collisions. Processes operating on such asteroids strongly influenced the final composition of these planets4, including Earth5. Currently there is little agreement about the nature of asteroidal igneous activity: proposals range from small-scale melting, to near total fusion and the formation of deep magma oceans2. Here we report a study of oxygen isotopes in two basaltic meteorite suites, the HEDs (howardites, eucrites and diogenites, which are thought to sample the asteroid 4 Vesta6) and the angrites (from an unidentified asteroidal source). Our results demonstrate that these meteorite suites formed during early, global-scale melting (≥ 50 per cent) events. We show that magma oceans were present on all the differentiated Solar System bodies so far sampled. Magma oceans produced compositionally layered planetesimals; the modification of such bodies before incorporation into larger objects can explain some anomalous planetary features, such as Earth's high Mg/Si ratio.

314 citations

Journal ArticleDOI
15 Dec 2006-Science
TL;DR: Particles emanating from comet 81P/Wild 2 collided with the Stardust spacecraft at 6.1 kilometers per second, producing hypervelocity impact features on the collector surfaces that were returned to Earth.
Abstract: Particles emanating from comet 81P/Wild 2 collided with the Stardust spacecraft at 6.1 kilometers per second, producing hypervelocity impact features on the collector surfaces that were returned to Earth. The morphologies of these surprisingly diverse features were created by particles varying from dense mineral grains to loosely bound, polymineralic aggregates ranging from tens of nanometers to hundreds of micrometers in size. The cumulative size distribution of Wild 2 dust is shallower than that of comet Halley, yet steeper than that of comet Grigg-Skjellerup.

308 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the first finding of continental crust-derived Precambrian zircons in garnet/spinel pyroxenite veins within mantle xenoliths carried by the Neogene Hannuoba basalt in the central zone of the North China Craton (NCC).
Abstract: We present the first finding of continental crust-derived Precambrian zircons in garnet/spinel pyroxenite veins within mantle xenoliths carried by the Neogene Hannuoba basalt in the central zone of the North China Craton (NCC). Petrological and geochemical features indicate that these mantle-derived composite xenoliths were formed by silicic melt^lherzolite interaction. The Precambrian zircon ages can be classified into three age groups of 2·4^2·5 Ga, 1·6^2·2 Ga and 0·6^1·2 Ga, coinciding with major geological events in the NCC. These Precambrian zircons fall in the field of continental granitoid rocks in plots of U/Yb vs Hf and Y. Their igneous-type REE patterns and metamorphic zircon type CL images indicate that they were not crystallized during melt^peridotite interaction and subsequent high-pressure metamorphism.The 2·5 Ga zircons have positive eHf(t) values (2·9^10·6), whereas the younger Precambrian zircons are dominated by negative eHf(t) values, indicating an ancient continental crustal origin.These observations suggest that the Precambrian zircons were xenocrysts that survived melting of recycled continental crustal rocks and were then injected with silicate melt into the host peridotite. In addition to the Precambrian zircons, igneous zircons of 315 3 Ma (2 ), 80^170 Ma and 48^64 Ma were separated from the garnet/spinel pyroxenite veins; these provide evidence for lower continental crust and oceanic crust recycling-induced multi-episodic melt^peridotite interactions in the central zone of the NCC. The combination of the positive eHf(t) values (2·91^24·6) of the 315 Ma zircons with the rare occurrence of 302^324 Ma subduction-related diorite^granite plutons in the northern margin of the NCC implies that the 315 Ma igneous zircons might record melt^peridotite interactions in the lithospheric mantle induced by Palaeo-Asian oceanic crust subduction. Igneous zircons of age 80^170 Ma generally coexist with the Precambrian metamorphic zircons and have lower Ce/Yb and Th/U ratios, higher U/Yb ratios and greater negative Eu anomalies.The eHf(t) values of these zircons vary greatly from ^47·6 to 24·6.The 170^110 Ma zircons are generally characterized by negative eHf(t) values, whereas the 110^100 Ma zircons have positive eHf(t) values.These observations suggest that melt^peridotite interactions at 80^170 Ma were induced by partial melting of recycled continental crust. The 48^64 Ma igneous zircons are characterized by negligible Ce anomalies, unusually high REE, U and Th contents, and positive eHf(t) values.These features imply that the melt^peridotite interactions at 48^64 Ma could be associated with a depleted mantle-derived carbonate melt or fluid.

2,753 citations

Journal ArticleDOI
Fu-Yuan Wu1, Yue-Heng Yang1, Lie-Wen Xie1, Jin-Hui Yang1, Ping Xu1 
TL;DR: In this article, the mean β Yb value of the individual spot and newly published Yb isotopic abundance data, six standard zircons and two standard baddeleyites, have been investigated using a Neptune MC-ICPMS, with 193 mm laser.

2,161 citations

Journal ArticleDOI
TL;DR: A general approach to EDLC design leading to the maximum energy density is suggested, which has been now proved for both solvated organic salts and solvent-free liquid electrolytes.
Abstract: The research on electrochemical double layer capacitors (EDLC), also known as supercapacitors or ultracapacitors, is quickly expanding because their power delivery performance fills the gap between dielectric capacitors and traditional batteries. However, many fundamental questions, such as the relations between the pore size of carbon electrodes, ion size of the electrolyte, and the capacitance have not yet been fully answered. We show that the pore size leading to the maximum double-layer capacitance of a TiC-derived carbon electrode in a solvent-free ethyl-methylimmidazolium-bis(trifluoro-methane-sulfonyl)imide (EMI-TFSI) ionic liquid is roughly equal to the ion size (∼0.7 nm). The capacitance values of TiC−CDC produced at 500 °C are more than 160 F/g and 85 F/cm3 at 60 °C, while standard activated carbons with larger pores and a broader pore size distribution present capacitance values lower than 100 F/g and 50 F/cm3 in ionic liquids. A significant drop in capacitance has been observed in pores that w...

1,913 citations

Journal ArticleDOI
TL;DR: In this paper, a protocol was established for simultaneous measurements of zircon U-Pb ages and trace elements by LA-ICP-MS at spot sizes of 16-32?m.
Abstract: A protocol was established for simultaneous measurements of zircon U-Pb ages and trace elements by LA-ICP-MS at spot sizes of 16–32 ?m. This was accomplished by introducing N2 into ICP to increase the sensitivity. The obtained U-Pb ages for zircon standards GJ-1, TEMORA and SK10-2 are consistent with the preferred values within about 1% uncertainty (2 σ ) by simple external calibration against zircon standard 91500. Different data reduction softwares could yield different uncertainties for calculation of U-Pb ages. The commercially available program GLITTER4.4 could apply an improper uncertainty calculation strategy, but it may yield artificial high precisions for single analyses. Our trace element analyses indicate that Si is not an ideal internal standard for zircon when calibrated against the NIST glasses. Calibration against the NIST glasses using Si as an internal standard, a systematic deviation of 10%–30% was found for most trace elements including Zr. However, the trace element compositions of zircon can be accurately measured by calibration against multiple reference materials with natural compositions (e.g., BCR-2G, BHVO-2G and BIR-1G), or calibration against NIST SRM 610 and using Zr as an internal standard. Analyses of two pieces of GJ-1 demonstrate that it is relatively homogenous for most trace elements (except for Ti).

1,227 citations